Calculus – Sequences and series – Absolute convergence

Definition: A series \(\displaystyle\sum a_n\) is called absolutely convergent if the series of absolute values \(\displaystyle\sum|a_n|\) is convergent.

Theorem: If a series \(\displaystyle\sum a_n\) is absolutely convergent, then it is convergent.

Proof:
Observe that the inequality \(0\leq a_n+|a_n|\leq 2|a_n|\) is true because \(|a_n|\) is either \(a_n\) or \(-a_n\). If \(\displaystyle\sum a_n\) is absolutely convergent, then \(\displaystyle\sum|a_n|\) is convergent, so \(\displaystyle\sum2|a_n|\) is convergent. Therefore, by the (direct) comparison test \(\displaystyle\sum\left(a_n+|a_n|\right)\) is convergent. Then

\[\sum a_n=\sum\left(a_n+|a_n|\right)-\sum|a_n|\]

is the difference of two convergent series and is therefore convergent.

Definition: A series \(\displaystyle\sum a_n\) is called conditionally convergent if it is convergent but not absolutely convergent.

Examples

  1. The alternating harmonic series \(\displaystyle\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\) is conditionally convergent,

  2. The series \(\displaystyle\sum_{n=1}^{\infty}\frac{\sin(n)}{n^2}\) is absolutely convergent.

The ratio test

Theorem:

  1. If \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<1\), then the series \(\displaystyle\sum a_n\) is absolutely convergent,

  2. If \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L>1\) or \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty\), then the series \(\displaystyle\sum a_n\) is divergent,

  3. If \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1\), this test is inconclusive: the series \(\displaystyle\sum a_n\) might be convergent or might be divergent.

Proof:
If \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<1\) we can choose a number \(r\) such that \(L < r < 1\). Then \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L\) implies that there exists an integer \(N\) such that \(\displaystyle\left|\frac{a_{n+1}}{a_n}\right| < r\) for all \(n\geq N\) or equivalently \(|a_{n+1}| < |a_n|r\) for all \(n\geq N\). Hence we have:

\[|a_{N+1}| < |a_N|r,\quad |a_{N+2}| < |a_{N+1}|r < |a_N|r^2,\quad|a_{N+3}| < |a_{N+2}|r < |a_N|r^3,\quad\ldots.\]

In general: \(|a_{N+k}| < |a_N|r^k\) for \(k=1,2,3,\ldots\). Now the series \(\displaystyle\sum_{k=1}^{\infty}|a_N|r^k\) is convergent because it is a geometric series with common ratio \(r\) and \(0 < r < r\). This implies that the series \(\displaystyle\sum_{n=N+1}^{\infty}|a_n|=\sum_{k=1}^{\infty}|a_{N+k}|\) is convergent. Hence the series \(\displaystyle\sum|a_n|\) is convergent.

If \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L>1\) or \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\infty\), then the ratio \(\displaystyle\left|\frac{a_{n+1}}{a_n}\right|\) will eventually be greater than \(1\), that is: there exists an integer \(N\) such that \(\displaystyle\left|\frac{a_{n+1}}{a_n}\right|>1\) for all \(n\geq N\). This implies that \(|a_{n+1}| > |a_n|\) for all \(n\geq N\) and therefore \(\lim\limits_{n\to\infty}a_n\neq0\). Hence the series \(\displaystyle\sum a_n\) is divergent.

In order to show that the test is inconclusive if \(\displaystyle\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1\), consider the divergent series \(\displaystyle\sum_{n=1}^{\infty}\frac{1}{n}\) and the convergent series \(\displaystyle\sum_{n=1}^{\infty}\frac{1}{n^2}\). Note that

\[\lim\limits_{n\to\infty}\frac{\frac{1}{n+1}}{\frac{1}{n}}=\lim\limits_{n\to\infty}\frac{n}{n+1}=1\quad\text{and}\quad \lim\limits_{n\to\infty}\frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}}=\lim\limits_{n\to\infty}\frac{n^2}{(n+1)^2}=\lim\limits_{n\to\infty}\left(\frac{n}{n+1}\right)^2=1.\]

Examples

1) Consider the alternating series \(\displaystyle\sum_{n=0}^{\infty}(-1)^n\frac{2n+1}{2^n}\). Let \(a_n=\displaystyle(-1)^n\frac{2n+1}{2^n}\), then we have:

\[\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim\limits_{n\to\infty}\left|(-1)^{n+1}\frac{2n+3}{2^{n+1}}\cdot(-1)^n\frac{2^n}{2n+1}\right| =\lim\limits_{n\to\infty}\frac{2n+3}{2n+1}\cdot\frac{1}{2}=\frac{1}{2}<1.\]

This implies that the series is absolutely convergent.

2) Consider the series \(\displaystyle\sum_{n=0}^{\infty}\frac{n!}{5^n}\). Let \(a_n=\displaystyle\frac{n!}{5^n}\), then we have:

\[\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim\limits_{n\to\infty}\left|\frac{(n+1)!}{5^{n+1}}\cdot\frac{5^n}{n!}\right| =\lim\limits_{n\to\infty}\frac{1}{5}(n+1)=\infty.\]

This implies that the series is divergent.

The root test

Theorem:

  1. If \(\displaystyle\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=L<1\), then the series \(\displaystyle\sum a_n\) is absolutely convergent,

  2. If \(\displaystyle\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=L>1\) or \(\displaystyle\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\infty\), then the series \(\displaystyle\sum a_n\) is divergent,

  3. If \(\displaystyle\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=1\), this test is inconclusive: the series \(\displaystyle\sum a_n\) might be convergent or might be divergent.

The proof is similar to the proof of the ratio test and is based on the observation that if \(L < r < 1\) then \(\displaystyle\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=L\) implies that there exists an integer \(N\) such that \(\sqrt[n]{|a_n|} < r\) for all \(n\geq N\). This implies that

\[\sqrt[N+k]{|a_{N+k}|} < r\quad\Longrightarrow\quad |a_{N+k}| < r^{N+k},\quad k=0,1,2,\ldots.\]

This implies that \(\displaystyle\sum_{k=0}^{\infty}|a_{N+k}|\) is convergent, since \(\displaystyle\sum_{k=0}^{\infty}r^{N=k}\) is a geometric series with common ratio \(r\) with \(0 < r < 1\) which is convergent.

Examples

1) Consider the series \(\displaystyle\sum_{n=0}^{\infty}\left(\frac{2n+1}{3n+4}\right)^n\). Let \(a_n=\displaystyle\left(\frac{2n+1}{3n+4}\right)^n\), then we have:

\[\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to\infty}\left|\frac{2n+1}{3n+4}\right|=\frac{2}{3}<1.\]

This implies that the series is absolutely convergent.

2) Consider the series \(\displaystyle\sum_{n=1}^{\infty}\left(\frac{2n+1}{n}\right)^n\). Let \(a_n=\displaystyle\frac{2n+1}{n}\), then we have:

\[\lim\limits_{n\to\infty}\sqrt[n]{|a_n|}=\lim\limits_{n\to\infty}\left|\frac{2n+1}{n}\right|=2.\]

This implies that the series is divergent.


Last modified on March 15, 2021
© Roelof Koekoek

Metamenu