Calculus – Functions of several variables – Partial derivatives
Definition: Let \(f\) be a function of two variables. Then
\[f_x(a,b)=\lim\limits_{h\to0}\frac{f(a+h,b)-f(a,b)}{h}\]is called the partial derivative of \(f\) with respect to \(x\) at the point \((a,b)\) and
\[f_y(a,b)=\lim\limits_{h\to0}\frac{f(a,b+h)-f(a,b)}{h}\]is called the partial derivative of \(f\) with respect to \(y\) at the point \((a,b)\).
More general: \(f_x(x,y)=\displaystyle\lim\limits_{h\to0}\frac{f(x+h,y)-f(x,y)}{h}\) and \(f_y(x,y)=\displaystyle\lim\limits_{h\to0}\frac{f(x,y+h)-f(x,y)}{h}\).
We use the notations
\[f_x(x,y)=f_x=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x}f(x,y)\quad\text{and}\quad f_y(x,y)=f_y=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}f(x,y).\]More than two variables
For a function \(f\) of three variables we have: \(f_x(x,y,z)=\displaystyle\lim\limits_{h\to0}\frac{f(x+h,y,z)-f(x,y,z)}{h}\), \(f_y(x,y,z)=\displaystyle\lim\limits_{h\to0}\frac{f(x,y+h,z)-f(x,y,z)}{h}\) and \(f_z(x,y,z)=\displaystyle\lim\limits_{h\to0}\frac{f(x,y,z+h)-f(x,y,z)}{h}\). Similarly in the case of more variables.
Higher-order partial derivatives
\begin{align*} f_{xx}&=(f_x)_x=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^2f}{\partial x^2}\\[2.5mm] f_{xy}&=(f_x)_y=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^2f}{\partial y\partial x}\\[2.5mm] f_{yx}&=(f_y)_x=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^2f}{\partial x\partial y}\\[2.5mm] f_{yy}&=(f_y)_y=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^2f}{\partial y^2} \end{align*}Example: If \(f(x,y)=e^{2x+y}\ln(x^2+3y^2)\), then we have
\[f_x(x,y)=2e^{2x+y}\ln(x^2+3y^2)+e^{2x+y}\frac{2x}{x^2+3y^2}\quad\text{and}\quad f_y(x,y)=e^{2x+y}\ln(x^2+3y^2)+e^{2x+y}\frac{6y}{x^2+3y^2}.\]Furthermore, we have
\[f_{xy}(x,y)=2e^{2x+y}\ln(x^2+3y^2)+2e^{2x+y}\frac{6y}{x^2+3y^2}+e^{2x+y}\frac{2x}{x^2+3y^2}-e^{2x+y}\frac{12xy}{(x^2+3y^2)^2}\]and
\[f_{yx}(x,y)=2e^{2x+y}\ln(x^2+3y^2)+e^{2x+y}\frac{2x}{x^2+3y^2}+2e^{2x+y}\frac{6y}{x^2+3y^2}-e^{2x+y}\frac{12xy}{(x^2+3y^2)^2}.\]Note that these are equal, which is not a coincidence.
Clairaut's theorem
Theorem: Suppose that \(f\) is defined on a disk \(D\) that contains the point \((a,b)\). If the functions \(f_{xy}\) and \(f_{yx}\) are both continuous on \(D\), then we have:
\[f_{xy}(a,b)=f_{yx}(a,b).\]Proof: See Stewart, Appendix F.
Partial differential equations
Definition: A partial differential equation is an equation involving an unknown function of several variables and one or more of its partial derivatives.
Examples are
- the heat conduction equation \(\alpha^2u_{xx}=u_t\) where \(\alpha^2\) denotes a positive constant (the thermal diffusivity);
- the wave equation \(a^2u_{xx}=u_{tt}\), where \(a^2\) denotes a positive constant (the spring constant);
- Laplace's (potential) equation \(u_{xx}+u_{yy}=0\).
Examples
1) The function \(u(x,y)=e^{-x}\cos(y)\) is a solution of Laplace's potential equation \(u_{xx}+u_{yy}=0\), since:
\[\left\{\begin{array}{l}u_x(x,y)=-e^{-x}\cos(y)\quad\Longrightarrow\quad u_{xx}(x,y)=e^{-x}\cos(y)\\[2.5mm] u_y(x,y)=-e^{-x}\sin(y)\quad\Longrightarrow\quad u_{yy}(x,y)=-e^{-x}\cos(y),\end{array}\right.\]which implies that \(u_{xx}+u_{yy}=0\).
2) The function \(u(x,t)=\sin(x+at)\) is a solution of the wave equation \(a^2u_{xx}=u_{tt}\), since:
\[\left\{\begin{array}{l}u_x(x,t)=\cos(x+at)\quad\Longrightarrow\quad u_{xx}(x,t)=-\sin(x+at)\\[2.5mm] u_t(x,t)=a\cos(x+at)\quad\Longrightarrow\quad u_{tt}(x,t)=-a^2\sin(x+at),\end{array}\right.\]which implies that \(a^2u_{xx}=u_{tt}\).
Application:
Stewart §14.3: Example 3
The Body Mass Index (BMI) or Quetelet Index (QI) of a person is defined by
where \(m\) is the person's mass (in kilograms) and \(h\) is the height (in meters).
The partial derivatives of \(B\) with respect to \(m\) and \(h\) are: \(\displaystyle\frac{\partial B}{\partial m}=\frac{1}{h^2}\) and \(\displaystyle\frac{\partial B}{\partial h}=-\frac{2m}{h^3}\).
For instance:
\[B_m(64,1.68)=\frac{1}{(1.68)^2}\approx0.35\quad\text{and}\quad B_h(64,1.68)=-\frac{2\cdot64}{(1.68)^3}\approx-27.\]So, for a person with a height of \(1.68\) m whose weight is \(64\) kg we have:
If the weight increases by a small amount, say \(1\) kg, and the height remains unchanged, then the BMI will increase by about \(0.35\).
If the height would increase by a small amount, say \(1\) cm, and the weight stays unchanged, then the BMI will decrease by about \(0.27\).
Last modified on September 15, 2021