Calculus – Differentiation – Remarkable identities
We have seen that \(\displaystyle\frac{d}{dx}(\arcsin(x))=\displaystyle\frac{1}{\sqrt{1-x^2}}\) and \(\displaystyle\frac{d}{dx}(\arccos(x))=-\displaystyle\frac{1}{\sqrt{1-x^2}}\). Then we have:
\[\frac{d}{dx}\left(\arcsin(x)+\arccos(x)\right)=\frac{1}{\sqrt{1-x^2}}-\frac{1}{\sqrt{1-x^2}}=0,\quad -1 < x < 1.\]This implies that \(\arcsin(x)+\arccos(x)\) is a constant function for \(-1 < x < 1\). Since \(\arcsin(0)+\arccos(0)=0+\frac{1}{2}\pi=\frac{1}{2}\pi\) it follows that \(\arcsin(x)+\arccos(x)=\frac{1}{2}\pi\) for \(-1 < x < 1\). However, since we also have
\[\arcsin(-1)+\arccos(-1)=-\tfrac{1}{2}\pi+\pi=\tfrac{1}{2}\pi\quad\text{and}\quad\arcsin(1)+\arccos(1)=\tfrac{1}{2}\pi+0=\tfrac{1}{2}\pi,\]we conclude that
\[\arcsin(x)+\arccos(x)=\tfrac{1}{2}\pi,\quad -1\leq x\leq 1.\]Another example is based on \(y=\arctan\left(\frac{1}{x}\right)\) for \(x\neq0\). Using the chain rule we obtain that
\[\frac{dy}{dx}=\frac{1}{1+\left(\frac{1}{x}\right)^2}\cdot\left(-\frac{1}{x^2}\right)=-\frac{1}{1+x^2},\quad x\neq0.\] This implies that the function \(\arctan(x)+\arctan\left(\frac{1}{x}\right)\) is constant for \(x>0\) and for \(x<0\). Since \(\arctan(1)=\frac{1}{4}\pi\) and \(\arctan(-1)=-\frac{1}{4}\pi\), we conclude that \[\arctan(x)+\arctan\left(\tfrac{1}{x}\right)=\tfrac{1}{2}\pi,\quad x>0\]and
\[\arctan(x)+\arctan\left(\tfrac{1}{x}\right)=-\tfrac{1}{2}\pi,\quad x<0.\]Stewart §3.5, Exercise 54
Find the derivative of \(y=\arctan\left(x-\sqrt{1+x^2}\right)\).
Solution:
Using the chain rule we obtain that
This result is remarkable, because this equals the derivative of \(\arctan(x)\) except for a factor \(2\). Note that
\[f(x)=\arctan(x)-2\arctan\left(x-\sqrt{1+x^2}\right)\quad\Longrightarrow\quad f'(x)=\frac{1}{1+x^2}-\frac{1}{1+x^2}=0.\]This implies that \(f(x)\) is constant. Now we have \(f(0)=\arctan(0)-2\arctan(-1)=0+\tfrac{1}{2}\pi=\tfrac{1}{2}\pi\). Hence we have:
\[\arctan(x)-2\arctan\left(x-\sqrt{1+x^2}\right)=\tfrac{1}{2}\pi,\quad x\in\mathbb{R}.\]Stewart §3.5, Exercise 60
Find the derivative of \(y=\arctan\left(\sqrt{\displaystyle\frac{1-x}{1+x}}\right)\) for \(x\geq0\).
Solution:
Using the chain rule we obtain that
This implies that the function \(g(x)=\arcsin(x)+2\arctan\left(\sqrt{\displaystyle\frac{1-x}{1+x}}\right)\) is constant on its domain \([0,1]\).
Since for instance we have
\[g(0)=\arcsin(0)+2\arctan(1)=\tfrac{1}{2}\pi\quad\text{or}\quad g(1)=\arcsin(1)+2\arctan(0)=\tfrac{1}{2}\pi,\]we conclude that
\[\arcsin(x)+2\arctan\left(\sqrt{\frac{1-x}{1+x}}\right)=\tfrac{1}{2}\pi,\quad 0\leq x\leq 1.\]Stewart §4.2, Exercise 34
Prove the identity \(2\arcsin(x)=\arccos\left(1-2x^2\right)\) for \(0\leq x\leq1\).
Solution:
Consider the function \(h(x)=2\arcsin(x)-\arccos\left(1-2x^2\right)\) for \(0\leq x\leq 1\). Then we have:
Hence: \(h(x)\) is constant for \(0\leq x\leq 1\). Now we have
\[h(0)=2\arcsin(0)-\arccos(1)=0-0=0\quad\text{and}\quad h(1)=2\arcsin(1)-\arccos(-1)=\pi-\pi=0.\]Hence: \(2\arcsin(x)=\arccos\left(1-2x^2\right)\) for \(0\leq x\leq1\).
Stewart §4.2, Exercise 35
Prove the identity \(\arcsin\left(\displaystyle\frac{x-1}{x+1}\right)=2\arctan\left(\sqrt{x}\right)-\frac{1}{2}\pi\) for \(x\geq0\).
Solution:
Suppose that \(k(x)=\arcsin\left(\displaystyle\frac{x-1}{x+1}\right)-2\arctan\left(\sqrt{x}\right)\) for \(x\geq0\). Then we have:
Hence: \(k(x)\) is constant for \(x\geq0\). Now we have \(k(0)=\arcsin(-1)-2\arctan(0)=-\frac{1}{2}\pi-0=-\frac{1}{2}\pi\). This implies that \(\arcsin\left(\displaystyle\frac{x-1}{x+1}\right)=2\arctan\left(\sqrt{x}\right)-\frac{1}{2}\pi\) for \(x\geq0\).
If you want to do it yourself:
Exercises:
- Prove the identity \(\displaystyle\arcsin(x)=\arccos\left(\sqrt{1-x^2}\right)\) for \(0\leq x\leq 1\).
- Prove the identity \(\displaystyle\arcsin(x)=\arctan\left(\frac{x}{\sqrt{1-x^2}}\right)\) for \(-1\leq x\leq 1\).
- Prove the identity \(\displaystyle\arctan(x)=\arcsin\left(\frac{x}{\sqrt{1+x^2}}\right)\) for all \(x\in\mathbb{R}\).
- Prove the identity \(\displaystyle\arctan(x)=\arccos\left(\frac{1}{\sqrt{1+x^2}}\right)\) for all \(x\in\mathbb{R}\).
Last modified on March 1, 2021