Analyse – Differentiëren – De afgeleiden van de inverse trigonometrische functies
Met behulp van impliciet differentiëren kunnen we de afgeleiden van de inverse trigonometrische functies bepalen.
\(y=\arcsin(x)\;\Longleftrightarrow\;\sin(y)=x\) met \(-\frac{1}{2}\pi\leq y\leq\frac{1}{2}\pi\). Dan volgt: \(\cos(y)\cdot\displaystyle\frac{dy}{dx}=1\;\Longrightarrow\;\frac{dy}{dx}=\frac{1}{\cos(y)}\).
Nu volgt: \(\cos^2(y)=1-\sin^2(y)=1-x^2\;\Longrightarrow\;\cos(y)=\pm\sqrt{1-x^2}\).
Aangezien \(-\frac{1}{2}\pi\leq y\leq\frac{1}{2}\pi\) volgt dat \(\cos(y)\geq 0\) en dus: \(\cos(y)=\sqrt{1-x^2}\). Conclusie: \(\displaystyle\frac{dy}{dx}=\frac{1}{\sqrt{1-x^2}}\).
\(y=\arccos(x)\;\Longleftrightarrow\;\cos(y)=x\) met \(0\leq y\leq\pi\). Dan volgt: \(-\sin(y)\cdot\displaystyle\frac{dy}{dx}=1\;\Longrightarrow\;\frac{dy}{dx}=-\frac{1}{\sin(y)}\).
Nu volgt: \(\sin^2(y)=1-\cos^2(y)=1-x^2\;\Longrightarrow\;\sin(y)=\pm\sqrt{1-x^2}\).
Aangezien \(0\leq y\leq\pi\) volgt dat \(\sin(y)\geq 0\) en dus: \(\sin(y)=\sqrt{1-x^2}\). Conclusie: \(\displaystyle\frac{dy}{dx}=-\frac{1}{\sqrt{1-x^2}}\).
\(y=\arctan(x)\;\Longleftrightarrow\;\tan(y)=x\) met \(-\frac{1}{2}\pi < y < \frac{1}{2}\pi\). Dan volgt: \(\displaystyle\frac{1}{\cos^2(y)}\cdot\frac{dy}{dx}=1\;\Longrightarrow\;\frac{dy}{dx}=\cos^2(y)\).
Nu volgt: \(\displaystyle\tan^2(y)=\frac{\sin^2(y)}{\cos^2(y)}=\frac{1-\cos^2(y)}{\cos^2(y)}\;\Longrightarrow\;\frac{1}{\cos^2(y)}=1+\tan^2(y)=1+x^2 \;\Longrightarrow\;\cos^2(y)=\frac{1}{1+x^2}\).
Conclusie: \(\displaystyle\frac{dy}{dx}=\frac{1}{1+x^2}\).
Resumé:
\begin{align*}\frac{d}{dx}(\arcsin(x))&=\frac{1}{\sqrt{1-x^2}}\\[5mm] \frac{d}{dx}(\arccos(x))&=-\frac{1}{\sqrt{1-x^2}}\\[5mm] \frac{d}{dx}(\arctan(x))&=\frac{1}{1+x^2}\end{align*}
Laatst gewijzigd op 1 maart 2021