Differential equations – Systems of linear differential equations – Nonhomogeneous systems
Now we consider nonhomogeneous systems of the form
\[\mathbf{x}'(t)=A\mathbf{x}(t)+\mathbf{g}(t)\quad\text{with}\quad\mathbf{g}(t)\neq\mathbf{0}.\]The general solution has the form \(\mathbf{x}(t)=\mathbf{x}_p(t)+\mathbf{x}_h(t)\) with \(\mathbf{x}_h(t)\) the general solution of the homogeneous sytem \(\mathbf{x}'(t)=A\mathbf{x}(t)\) and \(\mathbf{x}_p(t)\) a particular solution of the nonhomogeneous system. We consider three different methods:
- Uncoupling; in principle this is only possible if the matrix \(A\) is diagonalizable.
- The method of undetermined coefficients.
- The method of variation of parameters.
Uncoupling
If the matrix \(A\) is diagonizable, then we have: \(A=PDP^{-1}\) for some invertible matrix \(P\) and diagonal matrix \(D\). Now let \(\mathbf{x}=P\mathbf{y}(t)\), then we have:
\[\mathbf{x}'(t)=A\mathbf{x}(t)+\mathbf{g}(t)\quad\Longleftrightarrow\quad\mathbf{y}'(t)=D\mathbf{y}(t)+\mathbf{h}(t) \quad\text{met}\quad\mathbf{h}(t)=P^{-1}\mathbf{g}(t).\]The system for \(\mathbf{y}(t)\) is then an uncoupled system: a system of noncoupled (first order linear) differential equations. We solve this system for every differential equation separately. Thereafter we then obtain: \(\mathbf{x}=P^{-1}\mathbf{y}(t)\).
Defect matrices
If the matrix \(A\) is defect, then \(A\) is not diagonizable. However, we have: \(A=PJP^{-1}\) for some invertible matrix \(P\) and Jordan normal form \(J\). Now let \(\mathbf{x}=P\mathbf{y}(t)\), then we have:
\[\mathbf{x}'(t)=A\mathbf{x}(t)+\mathbf{g}(t)\quad\Longleftrightarrow\quad\mathbf{y}'(t)=J\mathbf{y}(t)+\mathbf{h}(t) \quad\text{met}\quad\mathbf{h}(t)=P^{-1}\mathbf{g}(t).\]Although this system is not (completely) uncoupled, it is often much easier than the original system.
Method of undetermined coefficients
First find the general solution \(\mathbf{x}_h(t)\) of the homogeneous system \(\mathbf{x}'(t)=A\mathbf{x}(t)\). Thereafter, based on \(\mathbf{g}(t)\) and the general solution \(\mathbf{x}_h(t)\) of the homogeneous system \(\mathbf{x}'(t)=A\mathbf{x}(t)\), we can sometimes determine an appropriate form of a particular solution \(\mathbf{x}_p(t)\) of the nonhomogeneous system. In this form there appear coefficients which should be determined. This only works if \(\mathbf{g}(t)\) consists of exponential functions, polynomials, sines and cosines, and combinations of these functions.
Method of variation of parameters
Find the general solution \(\mathbf{x}(t)=\Psi(t)\mathbf{c}\) of the homogeneous system \(\mathbf{x}'(t)=A\mathbf{x}(t)\). So hereby \(\Psi(t)\) is a fundamental matrix of the homogeneous system \(\mathbf{x}'(t)=A\mathbf{x}(t)\). Now let \(\mathbf{x}(t)=\Psi(t)\mathbf{u}(t)\), then we have: \(\mathbf{x}'(t)=\Psi'(t)\mathbf{u}(t)+\Psi(t)\mathbf{u}'(t)\). Substitution then gives
\[\Psi'(t)\mathbf{u}(t)+\Psi(t)\mathbf{u}'(t)=A\Psi(t)\mathbf{u}(t)+\mathbf{g}(t)\quad\Longrightarrow\quad\Psi(t)\mathbf{u}'(t)=\mathbf{g}(t).\]After all: \(\Psi'(t)=A\Psi(t)\). Since \(\Psi(t)\) is a fundamental matrix, it is invertible. Hence: \(\mathbf{u}'(t)=\Psi^{-1}(t)\mathbf{g}(t)\).
This implies: \(\mathbf{u}(t)=\displaystyle\int\Psi^{-1}(t)\mathbf{g}(t)\,dt\). This is not always an easy step. Depending on \(\mathbf{g}(t)\) and \(\Psi(t)\) this might be a rather nasty integral. However, if \(\mathbf{u}(t)\) can yet be obtained, then we finally have that \(\mathbf{x}(t)=\Psi(t)\mathbf{u}(t)\).
Example:
Consider \(\mathbf{x}'(t)=A\mathbf{x}(t)+\mathbf{g}(t)\) with \(A=\begin{pmatrix}5&-3\\6&-4\end{pmatrix}\) and \(\mathbf{g}(t)=\begin{pmatrix}e^{-t}\\e^t+2t+3\end{pmatrix}\). Then we have:
\[|A-rI|=\begin{vmatrix}5-r&-3\\6&-4-r\end{vmatrix}=r^2-r-2=(r-2)(r+1).\]Hence: \(r_1=2\) and \(r_2=-1\) are the eigenvalues of \(A\). Further we have:
\[r_1=2:\quad\begin{pmatrix}3&-3\\6&-6\end{pmatrix}\sim\begin{pmatrix}1&-1\\0&0\end{pmatrix}\quad\Longrightarrow\quad\mathbf{v}_1=\begin{pmatrix}1\\1\end{pmatrix}\]and
\[r_2=-1:\quad\begin{pmatrix}6&-3\\6&-3\end{pmatrix}\sim\begin{pmatrix}2&-1\\0&0\end{pmatrix}\quad\Longrightarrow\quad\mathbf{v}_2=\begin{pmatrix}1\\2\end{pmatrix}.\]Hence: \(\mathbf{x}_h(t)=c_1\mathbf{v}_1e^{r_1t}+c_2\mathbf{v}_2e^{r_2t}=c_1\begin{pmatrix}1\\1\end{pmatrix}e^{2t}+c_2\begin{pmatrix}1\\2\end{pmatrix}e^{-t}\) with \(c_1,c_2\in\mathbb{R}\).
This can also be written as \(\mathbf{x}_h(t)=\Psi(t)\mathbf{c}\) with \(\mathbf{c}=\begin{pmatrix}c_1\\c_2\end{pmatrix}\) and \(\Psi(t)=\begin{pmatrix}e^{2t}&e^{-t}\\e^{2t}&2e^{-t}\end{pmatrix}\), a fundamental matrix of \(\mathbf{x}'(t)=A\mathbf{x}(t)\).
The matrix \(A\) is diagonalizable: \(A=PDP^{-1}\) with \(P=\begin{pmatrix}1&1\\1&2\end{pmatrix}\) and \(D=\begin{pmatrix}2&0\\0&-1\end{pmatrix}\). Then we have: \(P^{-1}=\begin{pmatrix}2&-1\\-1&1\end{pmatrix}\).
1) Let \(\mathbf{x}(t)=P\mathbf{y}(t)\), then we have: \(\mathbf{y}'(t)=D\mathbf{y}(t)+\mathbf{h}(t)\) with \(\mathbf{h}(t)=P^{-1}\mathbf{g}(t) =\begin{pmatrix}2e^{-t}-e^t-2t-3\\-e^{-t}+e^t+2t+3\end{pmatrix}\). This is a system of noncoupled differential equations:
\[\left\{\begin{array}{l}y_1'(t)=2y_1(t)+2e^{-t}-e^t-2t-3\\[2.5mm]y_2'(t)=-y_2(t)-e^{-t}+e^t+2t+3\end{array}\right.\]These can be solved using the theory of first-order linear differential equations, however we can also apply the method of undetermined coefficients:
\[y_1'(t)=2y_1(t)+2e^{-t}-e^t-2t-3\quad\Longrightarrow\quad y_{1,h}(t)=c_1e^{2t}\quad\text{and}\quad y_{1,p}(t)=Ae^{-t}+Be^t+Ct+D.\]Substitution then gives: \(-Ae^{-t}+Be^t+C=2Ae^{t}+2Be^t+2Ct+2D+2e^{-t}-e^t-2t-3\). This implies: \(A=-\frac{2}{3}\), \(B=C=1\) and \(D=2\). Hence: \(y_{1,p}(t)=-\frac{2}{3}e^{-t}+e^t+t+2\).
\[y_2'(t)=-y_2(t)-e^{-t}+e^t+2t+3\quad\Longrightarrow\quad y_{2,h}(t)=c_2e^{-t}\quad\text{and}\quad y_{2,p}(t)=Ate^{-t}+Be^t+Ct+D.\]Substitution then gives: \(A(1-t)e^{-t}+Be^t+C=-Ate^{-t}-Be^t-Ct-D-e^{-t}+e^t+2t+3\). This implies: \(A=-1\), \(B=\frac{1}{2}\), \(C=2\) and \(D=1\). Hence: \(y_{2,p}(t)=-te^{-t}+\frac{1}{2}e^t+2t+1\). So we have obtained that
\[\left\{\begin{array}{l}y_1(t)=-\frac{2}{3}e^{-t}+e^t+t+2+c_1e^{2t}\\[0.5mm]y_2(t)=-te^{-t}+\frac{1}{2}e^t+2t+1+c_2e^{-t}\end{array}\right. \quad\Longleftrightarrow\quad\mathbf{y}(t)=\begin{pmatrix}y_1(t)\\y_2(t)\end{pmatrix}=\begin{pmatrix}-\frac{2}{3}e^{-t}+e^t+t+2+c_1e^{2t}\\ -te^{-t}+\frac{1}{2}e^t+2t+1+c_2e^{-t}\end{pmatrix}.\]Finally we have:
\begin{align*} \mathbf{x}(t)=P\mathbf{y}(t)&=\begin{pmatrix}1&1\\1&2\end{pmatrix}\begin{pmatrix}-\frac{2}{3}e^{-t}+e^t+t+2+c_1e^{2t}\\ -te^{-t}+\frac{1}{2}e^t+2t+1+c_2e^{-t}\end{pmatrix}=\begin{pmatrix}-te^{-t}-\frac{2}{3}e^{-t}+\frac{3}{2}e^t+3t+3+c_1e^{2t}+c_2e^{-t}\\ -2te^{-t}-\frac{2}{3}e^{-t}+2e^t+5t+4+c_1e^{2t}+2c_2e^{-t}\end{pmatrix}\\[2.5mm] &=-\begin{pmatrix}1\\2\end{pmatrix}te^{-t}-\frac{2}{3}\begin{pmatrix}1\\1\end{pmatrix}e^{-t}+\frac{1}{2}\begin{pmatrix}3\\4\end{pmatrix}e^t +\begin{pmatrix}3\\5\end{pmatrix}t+\begin{pmatrix}3\\4\end{pmatrix}+c_1\begin{pmatrix}1\\1\end{pmatrix}e^{2t}+c_2\begin{pmatrix}1\\2\end{pmatrix}e^{-t}. \end{align*}2) Based on \(\mathbf{x}_h(t)=c_1\begin{pmatrix}1\\1\end{pmatrix}e^{2t}+c_2\begin{pmatrix}1\\2\end{pmatrix}e^{-t}\) and \(\mathbf{g}(t)=\begin{pmatrix}e^{-t}\\e^t+2t+3\end{pmatrix}=\begin{pmatrix}1\\0\end{pmatrix}e^{-t}+\begin{pmatrix}0\\1\end{pmatrix}e^t +\begin{pmatrix}0\\2\end{pmatrix}t+\begin{pmatrix}0\\3\end{pmatrix}\) we choose:
\[\mathbf{x}_p(t)=\mathbf{v}_1te^{-t}+\mathbf{v}_2e^{-t}+\mathbf{v}_3e^t+\mathbf{v}_4t+\mathbf{v}_5.\]Substitution then gives:
\[\mathbf{v}_1(1-t)e^{-t}-\mathbf{v}_2e^{-t}+\mathbf{v}_3e^t+\mathbf{v}_4=A\mathbf{v}_1te^{-t}+A\mathbf{v}_2e^{-t}+A\mathbf{v}_3e^t+A\mathbf{v}_4t+A\mathbf{v}_5 +\begin{pmatrix}1\\0\end{pmatrix}e^{-t}+\begin{pmatrix}0\\1\end{pmatrix}e^t+\begin{pmatrix}0\\2\end{pmatrix}t+\begin{pmatrix}0\\3\end{pmatrix}.\]This implies:
\[A\mathbf{v}_1=-\mathbf{v}_1,\quad A\mathbf{v}_2+\begin{pmatrix}1\\0\end{pmatrix}=\mathbf{v}_1-\mathbf{v}_2,\quad A\mathbf{v}_3+\begin{pmatrix}0\\1\end{pmatrix}=\mathbf{v}_3,\quad A\mathbf{v}_4+\begin{pmatrix}0\\2\end{pmatrix}=\mathbf{0} \quad\text{and}\quad A\mathbf{v}_5+\begin{pmatrix}0\\3\end{pmatrix}=\mathbf{v}_4.\]Or equivalently:
\[(A+I)\mathbf{v}_1=\mathbf{0},\quad(A+I)\mathbf{v}_2=\mathbf{v}_1-\begin{pmatrix}1\\0\end{pmatrix},\quad (A-I)\mathbf{v}_3=-\begin{pmatrix}0\\1\end{pmatrix},\quad A\mathbf{v}_4=-\begin{pmatrix}0\\2\end{pmatrix}\quad\text{and}\quad A\mathbf{v}_5=\mathbf{v}_4-\begin{pmatrix}0\\3\end{pmatrix}.\]Hence: \(\mathbf{v}_1\) is an eigenvector of \(A\) corresponding to the eigenvalue \(-1\): \(\mathbf{v}_1=\alpha\begin{pmatrix}1\\2\end{pmatrix}\). Then we have:
\[(A+I)\mathbf{v}_2=\mathbf{v}_1-\begin{pmatrix}1\\0\end{pmatrix}:\quad\left(\left.\begin{matrix}6&-3\\6&-3\end{matrix}\,\right|\,\begin{matrix}\alpha-1\\2\alpha\end{matrix}\right) \sim\left(\left.\begin{matrix}2&-1\\0&0\end{matrix}\,\right|\,\begin{matrix}\frac{2}{3}\alpha\\\alpha+1\end{matrix}\right) \quad\Longrightarrow\quad\alpha=-1\quad\text{en}\quad\mathbf{v}_2=-\frac{2}{3}\begin{pmatrix}1\\1\end{pmatrix}\quad\text{bijvoorbeeld.}\]Further we have:
\[(A-I)\mathbf{v}_3=-\begin{pmatrix}0\\1\end{pmatrix}:\quad\left(\left.\begin{matrix}4&-3\\6&-5\end{matrix}\,\right|\,\begin{matrix}0\\-1\end{matrix}\right) \quad\Longrightarrow\quad\mathbf{v}_3=\frac{1}{2}\begin{pmatrix}3\\4\end{pmatrix},\] \[A\mathbf{v}_4=-\begin{pmatrix}0\\2\end{pmatrix}:\quad\left(\left.\begin{matrix}5&-3\\6&-4\end{matrix}\,\right|\,\begin{matrix}0\\-2\end{matrix}\right) \quad\Longrightarrow\quad\mathbf{v}_4=\begin{pmatrix}3\\5\end{pmatrix}\]and
\[A\mathbf{v}_5=\mathbf{v}_4-\begin{pmatrix}0\\3\end{pmatrix}:\left(\left.\begin{matrix}5&-3\\6&-4\end{matrix}\,\right|\,\begin{matrix}3\\2\end{matrix}\right) \quad\Longrightarrow\quad\mathbf{v}_5=\begin{pmatrix}3\\4\end{pmatrix}.\]Hence:
\[\mathbf{x}(t)=-\begin{pmatrix}1\\2\end{pmatrix}te^{-t}-\frac{2}{3}\begin{pmatrix}1\\1\end{pmatrix}e^{-t}+\frac{1}{2}\begin{pmatrix}3\\4\end{pmatrix}e^t +\begin{pmatrix}3\\5\end{pmatrix}t+\begin{pmatrix}3\\4\end{pmatrix}+c_1\begin{pmatrix}1\\1\end{pmatrix}e^{2t}+c_2\begin{pmatrix}1\\2\end{pmatrix}e^{-t}.\]3) We have: \(\mathbf{x}_h(t)=\Psi(t)\mathbf{c}\) with \(\mathbf{c}=\begin{pmatrix}c_1\\c_2\end{pmatrix}\) and \(\Psi(t)=\begin{pmatrix}e^{2t}&e^{-t}\\e^{2t}&2e^{-t}\end{pmatrix}\). Then we have:
\[\Psi(t)=\begin{pmatrix}e^{2t}&e^{-t}\\e^{2t}&2e^{-t}\end{pmatrix}=\begin{pmatrix}1&1\\1&2\end{pmatrix}\begin{pmatrix}e^{2t}&0\\0&e^{-t}\end{pmatrix}\quad\Longrightarrow\quad \Psi^{-1}(t)=\begin{pmatrix}e^{-2t}&0\\0&e^t\end{pmatrix}\begin{pmatrix}2&-1\\-1&1\end{pmatrix}=\begin{pmatrix}2e^{-2t}&-e^{-2t}\\-e^t&e^t\end{pmatrix}.\]Now let: \(\mathbf{x}(t)=\Psi(t)\mathbf{u}(t)\). Then we have: \(\mathbf{x}'(t)=\Psi'(t)\mathbf{u}(t)+\Psi(t)\mathbf{u}'(t)\). Substitution then gives:
\[\Psi'(t)\mathbf{u}(t)+\Psi(t)\mathbf{u}'(t)=A\Psi(t)\mathbf{u}(t)+\mathbf{g}(t)\quad\Longleftrightarrow\quad\Psi(t)\mathbf{u}'(t)=\mathbf{g}(t) \quad\Longleftrightarrow\quad\mathbf{u}'(t)=\Psi^{-1}(t)\mathbf{g}(t).\]After all: \(\Psi'(t)=A\Psi(t)\). Hence:
\[\mathbf{u}'(t)=\Psi^{-1}(t)\mathbf{g}(t)=\begin{pmatrix}2e^{-2t}&-e^{-2t}\\-e^t&e^t\end{pmatrix}\begin{pmatrix}e^{-t}\\e^t+2t+3\end{pmatrix} =\begin{pmatrix}2e^{-3t}-e^{-t}-(2t+3)e^{-2t}\\-1+e^{2t}+(2t+3)e^t\end{pmatrix}.\]Using integration by parts we obtain
\[\int(2t+3)e^{-2t}\,dt=-\frac{1}{2}\int(2t+3)\,de^{-2t}=-\frac{1}{2}(2t+3)e^{-2t}+\int e^{-2t}\,dt=-te^{-2t}-\frac{3}{2}e^{-2}-\frac{1}{2}e^{-2t}+C =-(t+2)e^{-2t}+C\]and
\[\int(2t+3)e^t\,dt=\int(2t+3)\,de^t=(2t+3)e^t-2\int e^t\,dt=2te^t+3e^t-2e^t+K=(2t+1)e^t+K.\]Hence:
\[\mathbf{u}(t)=\int\begin{pmatrix}2e^{-3t}-e^{-t}-(2t+3)e^{-2t}\\-1+e^{2t}+(2t+3)e^t\end{pmatrix}\,dt =\begin{pmatrix}-\frac{2}{3}e^{-3t}+e^{-t}+(t+2)e^{-2t}+c_1\\-t+\frac{1}{2}e^{2t}+(2t+1)e^t+c_2\end{pmatrix}.\]Finally we have:
\begin{align*} \mathbf{x}(t)=\Psi(t)\mathbf{u}(t)&=\begin{pmatrix}e^{2t}&e^{-t}\\e^{2t}&2e^{-t}\end{pmatrix} \begin{pmatrix}-\frac{2}{3}e^{-3t}+e^{-t}+(t+2)e^{-2t}+c_1\\-t+\frac{1}{2}e^{2t}+(2t+1)e^t+c_2\end{pmatrix} =\begin{pmatrix}-te^{-t}-\frac{2}{3}e^{-t}+\frac{3}{2}e^t+3t+3+c_1e^{2t}+c_2e^{-t}\\ -2te^{-t}-\frac{2}{3}e^{-t}+2e^t+5t+4+c_1e^{2t}+2c_2e^{-t}\end{pmatrix}\\[2.5mm] &=-\begin{pmatrix}1\\2\end{pmatrix}te^{-t}-\frac{2}{3}\begin{pmatrix}1\\1\end{pmatrix}e^{-t}+\frac{1}{2}\begin{pmatrix}3\\4\end{pmatrix}e^t +\begin{pmatrix}3\\5\end{pmatrix}t+\begin{pmatrix}3\\4\end{pmatrix}+c_1\begin{pmatrix}1\\1\end{pmatrix}e^{2t}+c_2\begin{pmatrix}1\\2\end{pmatrix}e^{-t}. \end{align*}Last modified on July 1, 2021