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Abstract

We look for differential equations of the form

MY @)y (@) + N S bi(0)y® (@) + MN Y e(2)y (@)
=0 1=0 =0

+ (1 =2y () +[f—a—(a+p+2)z]y(z) +nn+a+ B+ 1Dy(x)=0

satisfied by the generalized Jacobi polynomials {Pﬁ’B’M N (x)}zozo which are orthogonal
on the interval [—1,1] with respect to the weight function

Ia+5+2)

T ra DL 0 ¢ +a)’ + Mé(z +1) + No(z - 1),

where « > —1, 8 > =1, M > 0 and N > 0. We give explicit representations for
the coefficients {a;(z)};o,, {bi(z)};=, and {c;(z)};=, and we show that this differential
equation is uniquely determined. For M? 4+ N2 > 0 the order of this differential equation
is infinite, except for a € {0,1,2,...} or 8 € {0,1,2,...}. Moreover, the order equals

28 + 4 if M>0, N=0 and fe{0,1,2,...}
200+ 4 if M=0, N>0 and a € {0,1,2,...}
20+20+6 if M>0, N>0 and a,5 € {0,1,2,...}.
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1 Introduction

In [16] T.H. Koornwinder introduced the polynomials {Pﬁ’ﬂ’M N (m)}oo o which are orthogonal
n—=
on the interval [—1, 1] with respect to the weight function
F(a+B4+2)
20HAH D (o + DT(B + 1)

where « > —1, 8 > —1, M > 0 and N > 0. We call these polynomials the generalized
Jacobi polynomials, but sometimes they are also referred to as the Jacobi-type polynomi-
als. As a limit case he also found the generalized Laguerre (or Laguerre-type) polynomials

(1—2)*(1+ )’ + Mé(z+1) + Né(z — 1),

LM (1) *  Which are orthogonal on the interval [0, c0) with respect to the weight function
n n=0
1
Fa+1)

where o > —1 and M > 0. These generalized Jacobi polynomials and generalized Laguerre
polynomials are related by the limit

2x
LM (z) = lim paAOM (1 - ) . 1
n () = g 3 (1)

In [9] we proved that for M > 0 the generalized Laguerre polynomials satisfy a unique
differential equation of the form

%" 4+ Mé(x),

MZal z) +ay’(z) + (a + 1 - 2)y' () + ny(z) = 0,

where {a;(z)};°, are continuous functions on the real line and {a;(z)};2, are independent of
the degree n. In [2] H. Bavinck found a new method to obtain the main result of [9]. This
inversion method was found in a similar way as was done in [6] in the case of generalizations
of the Charlier polynomials. See also [11] for more details. In [12] we used this inversion
method to find all differential equations of the form

MZaZ +N2b

—|—MNZ O () + 29" (2) + (e + 1 — 2)y/ () + ny(z) = 0,
=0
where the coefficients {a;(z)};2,, {bi(x)};=; and {ci(x)};2, are independent of n and the
coefficients ag(x), bo(z) and co(x) are independent of x, satisfied by the Sobolev-type Laguerre

[e.9]
polynomials {L%M NV (m)} 0 which are orthogonal with respect to the inner product
n=

<05 = Fary ) e @)+ M 00(0) + NF0)4/0).

[e.e]

where « > —1, M > 0 and N > 0. These Sobolev-type Laguerre polynomials {L%M’N(ac)} .

are generalizations of the generalized Laguerre polynomials {Lg’M (:c)}oo o In fact we have
e

L0 () = Ly ().



In this paper we will use the inversion formula found in [11] to find differential equations
of the form

MZaZ +sz +MNZcz O (x)

1=0
(L= @) 19— (0 B+ Daly (@) +nln-+ a-+ B+ Dyle) 0,2

where the coefficients {a;(z)};2,, {bi(x)};=; and {ci(x)};2, are independent of n and the
coefficients ag(x), bp(z) and co(x) are independent of z, satisfied by the generalized Jacobi
polynomials {Pr‘f"ﬂ’M’N(x)}ooio

Fora=0=0,M >0 and N > 0 the generalized Jacobi polynomials reduce to the Krall
polynomials studied by L.L. Littlejohn in [20]. These Krall polynomials are generalizations
of the Legendre type polynomials (« = =0 and N = M > 0) found by H.L. Krall in [18]
and [19]. See also [17]. In [20] it is shown that the Krall polynomials satisfy a sixth order
differential equation of the form (2). For a > —1, 3 =0, M > 0 and N = 0 or for a = 0,
8> —-1, M =0 and N > 0 the generalized Jacobi polynomials reduce to the Jacobi type
polynomials which satisfy a fourth order differential equation of the form (2) ; see also [17],
[18] and [19].

We emphasize that the case § = o and N = M is special in the sense that we can also
find differential equations of the form

o
MY di(a)y () + (1= )y () = 2o+ Day' (@) + n(n + 20+ Dy(x) =0, (3)
i=0
where the coefficients {d;(x)};, are independent of n and dy(z) is independent of z, satisfied
[e.o]
by the symmetric generalized ultraspherical polynomials {Pﬁ“’a’M’M (a:)} o The Legendre

type polynomials for instance satisfy a fourth order differential equation gf_ the form (3). See
[17], [18] and [19]. In [14] we found all differential equations of the form (3) satisfied by the

polynomials {P"‘ oMM (o, )}oo_ for « > —1 and M > 0. In [10] we applied the special case

B = « of the Jacobi inversion formula to solve the systems of equations obtained in [14].

2 The main results

We look for all differential equations of the form (2) satisfied by the generalized Jacobi poly-
oo

nomials {P,?’@M’N (x)} o A representation of these orthogonal polynomials will be given
n=

in section 5. We emphasize that we demand that the coefficients {a;(x)};2,, {bi(z)};2, and
{ci(z)};2, are independent of the degree n and that ag(z), bo(x) and ¢o(z) do not depend on
x. Therefore we will use the following notations :

ap(z) = ap(n,a, B), bo(z) =bo(n,a,f), co(x)=co(n,a,p), n=0,1,2,...
and
al(m) :ai(a,ﬁ,x), bZ(ZL‘) :bi(a,ﬂ,ﬂf), CZ( ) _Cl( ﬁa )7 Z:1a2a37

We will apply a general theorem by H. Bavinck to prove that fora > -1, 3> -1, M >0
o0

and N > 0 the polynomials {Pﬁﬁ’M’N (x)} o satisfy a unique differential equation of the
n—



form (2), where

(B4 3)n—1(a+ B+ 3)n-1
(a+1)p_1(n=1"1 7

(a+3)p—1(a+F+3)n-1

ap(0,,3) =0, ap(n,a,B) = (a+ B+ 2)

n=1,2,3,..., (4

b0(07a7ﬁ)207 bo(n7a7/3):(a+/3+2) (ﬂ+1)n_1(n_1)! 7n:]‘72737"'7 (5)
CO(Oaavﬁ) = 60(17a7ﬁ) =0 and
(a4 B+2)*a+B+3)
CO(nvaaﬁ)_ (Oé+].)(ﬁ+1)
(OZ + 5 + 4)n71 (Oé + 5 + 4)7172 o
S R (6)
Further we will show that
i—1
_ i3 ¢ (BH3)ice—1(=B—2)i—e—1
ai(a,f,x) = —(a+ B +2)2 g)(_l) (@t D)ot (i — O (i —f— 1)
b, a+B+3,8+i—L0+2 z+ 1\
X3F2< ati—li—t+1 ‘1>< 2 > "
and
z'fl
_ (a+3) ( a—2)i ¢ 1
E,a+ﬁ+3,a+z—€+2 r— 1\
X3F2( Bti—li—l+1 ’1)( 2 ) ®
fori=1,2,3,... and that
(o, B8,2) =0 and ¢;i(a, 8,2) = c§1)(a,ﬁ, x) —1—052)(04,5,33), i=2,3,4,..., 9)

where for i = 2,3,4, ...

(1) B (a+B+2)2%(a+B+3)(a+pB+4)
(e fr) =~ (a+1)(B+1)i

=2 (B+3)i—e—2(—a =B —3)i—r—
D3 G oy ¥ iy 17 ey

( )21 2

(=0

_ L 0+1
lLa+B+5a+pB+4,8+1 E—i—l’l) (x—l—l) (10)

X4F3( B4+8i—Li—1 2

and

(a+B8+2%a+B+3)(@+B+4), 5 .\, i
(a+ (3T )i @ -1(=2)

i—2
(a+3)i—p—2(—a— B —3)i—r—2
X;% i— (1) (z—ﬁ—2)!£!(i—£—1)!

—f,a+ﬁ+5,0z+ﬁ+4,a+i—€—l—1‘ ><m—1>”1
1 11
X4F3< a+3i—li—" 2 (11)

o (a, B,x) =

3



Note that we have
ai(a, B,x) = (=1)'b;(B, o, =), i = 1,2,3, ... (12)
and '
cgl)(a,ﬁ, x) = (—1)’022)(6,(1, —x), i =2,3,4,.... (13)

Finally we will show that for « > —1, # > —1 and M2+ N? > 0 the order of the differential
equation (2) will be infinite in general. Only for nonnegative integer values of v or 3 finite
order can occur. Moreover, the order of the differential equation equals

26+ 4 if M>0, N=0 and 8e{0,1,2,...)
200 + 4 if M=0, N>0 and o €{0,1,2,...}
20 +20+6 if M>0, N>0 and a,8 € {0,1,2,...}.

In fact, we will show that

ai(o, B,2) =0, i >20+4 if 5€{0,1,2,...}, (14)
bi(a, B,2) =0, i >2a+4 if ac{0,1,2,...) (15)

and
ci(la,B,2) =0, i >2a+20+6 if o,0€{0,1,2,...}. (16)

Further we have

1 (1)2 _ 1)ﬂ+2

a25+4(aaﬁa .T) = _(Oé T 1)ﬂ+1 (ﬁ T 2)' , B e {07 1,2,.. '}7 (17)
1 2 _ 1 a+2
b2a+4(a’ﬁax) = _(,8+ 1)0¢+l (aj(oé+ ;)| , & € {07 ]-727 .. } (18)
and
o+ f+2 (22 — 1) tA+3
C2a+2ﬁ+6(a7/87x) = _(O(+ 1)(ﬁ+1) (O[-f—ﬂ—i- 1)'(0[4‘64—3)'7 Oé,ﬁ € {071727} (19)

3 The classical Jacobi polynomials

In this section we list the definitions and some properties of the classical Jacobi polynomials
which we will use in this paper. For details the reader is referred to [7], [15] and [23].

. . . (o,3) o0
The classical Jacobi polynomials § P, "’ () can be defined by

n=0
n k
Pl () 3 (n—i-a—]:'ﬁ-i—l)k (a —i(—n]"u‘j]j))'n—k <:c;1> 012, (20)
—~ ! !
n e —k— . o . 1 k
= (1)”];)( n k!a B ( ?n_cz))! k(x2 ) ,n=0,1,2,...(21)

for all @ and 3. The Jacobi polynomials satisfy the symmetry relation

P}f!,ﬁ)(m) — (_1)” T(Lfgva)(_x)’ n = 0’ ]_, 2, e (22)



From (20) and (22) we easily find for n =0,1,2,...

D Dn
P9 (1) = (a+1)n and P9 (_1) = (_1)71@ (23)
n! n!

and )

piples)(y) = (1 ;5 i )"Pﬁjw*“(x), i=0,1,2,...,n, (24)
d
where D = . denotes the differentiation operator. These Jacobi polynomials satisfy the
linear second order differential equation

(1-2?)y" (@) +[B—a—(a+B+2)z]y(z) + n(n+a+ B+ 1)y(z) =0. (25)

By using the definition (20) and the symmetry relation (22) it is not very difficult to derive
the following relations

Pletld) gy — plesbtl)(g) = POty =123, .., (26)
nP?) (z) — (n+ )PP (z) = (2 = 1)DPP(z), n=1,2,3,..., (27)
nPe? () + (n+ )P (2) = (2 + 1)DPP)(2), n =1,2,3,. .., (28)
(n+a+1)PP(z) — (a+1)PLthh) (z) = (n+m( 5 )P@”ﬁR),nszﬁ,”(w)
and
1\ (a
(n+8+1) P\ (2) = (B+1) P D (z) = (n+a) <x; >Pr§-’f+2)(:f:), n=1,2,3,.... (30)

Note that the differential equation (25) implies that

n(n+a+ B+ 1P (z) — [(B+1)(z — 1) + (a+ 1)(z + 1)] DPL*(z)

= (22— 1)D*P P (z), n=0,1,2,.... (31)
By using Leibniz’ rule we also have for n =0,1,2,... and i =0,1,2,...
(1 —2®)DH2P@O) (1) + [ — o — (o + B + 2i + 2)z] DF1PA) ()
+(n—i)(n+a+B+i+1)D'P>P(z)=0. (32)

4 Some inversion, summation and transformation formulas

In this section we will give some inversion formulas which we will need in this paper. Further
we derive some summation formulas which we will use. Finally we give two transformation
formulas which will be used in section 8 of this paper.

Let > —1 and 6 > —1.

In this paper we have to deal with systems of equations of the form

ZA (2)D' PP () = F(x), n=1,2,3,..., (33)



where the coefficients {A4;(x)};°; are independent of n. In [11] we have shown that this system
of equations has a unique solution given by

‘L a+f+2+1 pl-a—i-1,-f-i-1)

Ai(z) =2 : (—
) ;(a+ﬁ+g+1)i+1 "

(x)Fj(x), i=1,2,3,.... (34)

We will also need a variant of this inversion formula. In a similar way we may also conclude
that a system of equations of the form

> " Bi(z)D' PP (z) = Gn(z), n=0,1,2,..., (35)
1=0

where the coefficients {B;(x)};2, are independent of n has a unique solution given by

25 + 1
Bi(ﬂU):QZZ a+pG+25+

J=0

—a—i—1,—B—i—1 )
(oz+ﬂ+j+1)~+1pi(—j T @)G(e), i =0,1,2,.... (36)

The case a+ 3+ 1 = 0 must be understood by continuity.
Let N denote a positive integer. Now we consider the (N x N)-matrix A defined by

i, i=j
A= (ay)li—y with aj; =< 2z, i=j+1 (37)
0, otherwise.

Since det(A) = N! # 0 this matrix is invertible for every z. We will show that its inverse is
given by o .
(G-
A7 =B = (by)jy— with b = il  t2 (38)
0, i< J.

To prove this we write

N
AB=C = (Cij>zj-?;-:1 with Cij = Z aikbkj
k=1

and we will show that C' = I, the identity matrix. For N = 1 this is trivially true. For
N €{2,3,4,...} we have

Clj = anblj = blj and Cij = ai,i_lbi_Lj + aiibij = sz’—l,j + ibij for 1 Z 2.

Hence ¢;; = 0 if 7 < j,

i — 1)!
c11 =b11 =1, Ciizo—l—i(z m ) =1 fori>2
2.

S1)iLG = 1) 2 (<) (G — 1) 2
S G i )L e € B A PP Y
(Z—l)' 7l

This proves (38).



We also need the following matrix inverse. Let IV denote a positive integer again and
consider the (N x N)-matrix A defined by

i(i+1), i=j
. 2ix 1=7+1
N 5 J
A= (aij)mzl with Qi = 22 1, i=j+2 (39)
0, otherwise.

Since det(A4) = N!(N + 1)! # 0 this matrix is invertible for every x. We will show that its
inverse is given by

AT =B = (by)i

(=)@ = D! [+ 1) — (@ = 1)
with bij = Q(i —+ 1)' ’
0, i < g

27 (40

To prove this we write again
N
AB=C = (Cij>z]'?]j:1 with Cij = Z aikbkj
k=1

and again we will show that C' = I, the identity matrix. For N = 1 this is trivially true and

for N = 2 we find that
10

2 0
e (20)(
cij = a11bij = 2b1j, c2j = ag1bij + agaba; = 4xby; + 6by;

x

|l
o= O

For N € {3,4,5,...} we have

and
Cij = am_gbi_gd‘ + ai’i_lbi_L]‘ + aiibij = (.%'2 — l)bi_gd' + Qil'bi_l,j + ’L(l + 1)[)2']' for i > 3.

Hence ¢;; = 0 if i < j,
c11 = 2b11 =1, ca2 = 0+ 6byp = 1,

3 =12 _
sz—0+0+2(1+1)m—1f0r 123,
=202 (i—2)4a ,
=4 = i1 = Nr—F77— — 1) =0 fi >
ca1 xbi1 4+ 6b21 =0, ¢ -1 =0+ 2iz o i(i+1) 20+ 1)1 0 for i >3
and by using 2z = (x + 1) + (x — 1)
—1)9(5 — 1) 1)i—9-1 _ _1)i—i-1
SN 1 (U VB (RS Vi ot Vi
2(i—1)!
_1)ei-1s 1)1 i=j _ —1)i—J
(—1) (G = D [(x + 1)+ — (2 = 1)"+]]

+i(i+1) 261D



- (_12)21' ]—(jl)_' = [(x D+ = (z+1)(z—-1)"7 — (z+ 1)

@+ )(z-1)""7 —(z—-D(x+1)"7 4 (x — 1)
+ (2 + 1) (2 1)
= 0 for ¢ >j+2.

This proves (40).
We will also need the well-known Vandermonde summation formula

—n,a
o1 ( b

_(b—a)n .
1) = Gt 0 A0 =012, (41)

which can be found in [1] and [22] for instance. We also need the following summation
formulas :

Fu(a,b) = ;;@Egﬁ?nm“+2“ (42)
m, =0,1,2,... (43)
and
z”: (=m)k (@) (BO)r(C)k (b+ 2k)

(b+n—|—1)k(b—a+1)k(b—c+1)kk!

D)pt1(b—a—c+1),
= =0,1,2,.... 44
(b—a—l—l)n(b—c—l—l)n’n 9 Ly “y ( )

k=0

Formula (43) can easily be proved by using mathematical induction. Formula (44) can be
proved by using the well-known summation formula for a terminating well-poised 5Fy :

1) b+ 1)pb—a—c+1),

n=0,1,2,....

—n,a,b,c, %b—kl B
> T b—a+pb—c+1),

b+n+1,b—a+1,b—c+1,%b

This formula can be found in [1] and [22] for instance. Note that (43) follows from (44) by
settingc=b+n+ 1.

Finally we will need the following transformation formula (see for instance [21], section
9.1, formula (34))

a,b,c, > b)n(c n
ma (i ]e) = e B R
X o Fy (n +na+nd+nb+n€+ c ) Re(z) < % (45)

As a special case we also have

by (072 = i(_l)m)n(b)n(q

¢ q

[
—
=
(=)
~—

3
""U

)nanFl(n+a,n+b
n-—+c

z> , Re(z) < ;



5 The generalized Jacobi polynomials

Let > =1, 8 > =1, M > 0 and N > 0. In [16] it is shown that the generalized Jacobi
o
polynomials {Pﬁ‘vﬂ’M’N(x)} can be written as

PPN (1y — ple) () + MQ@P) (x) + NROH (z) + MNS @ (z), n=0,1,2,..., (47)

where
5 (@) = B (@) = 5577 (2) = 0

and forn=1,2,3,...

B+2)p—1(a+L+2)p1

QY (z) = RS

X {n(n +a+ B+ 1)P*)(x) - (B+1)(z — 1) DR (m)} , (48)
R (@) = (& Q)T(Elfiiﬁ et

x [n(n +a+ B+ 1) P (2) = (0 + 1)(z + 1)DP) ()] (49)

and
S(@B) (z) = 1 (a+B+2)n(a+B+2)n
" (a+1)(B+1) n!'(n—1)!
X {n(n +a+ 84 1)PeA ()

—{(B+ D@ = 1)+ (a+ 1)@+ 1)} DR ()] .(50)

First of all we remark that the generalized Jacobi polynomials satisfy the symmetry rela-
tion (see [16])

PRt (z) = (=) PRt (—a), n =012, (51)
which implies that
QP (z) = (~1)"RP)(~z), n=0,1,2,... (52)

and
Sgaﬂ)(x) — (_1)715(5,04)(_;[;)7 n=20,1,2,....

n

From (48) and (49) it follows that

@)1y BE2Dn1(a+B8+2)n Lap) _
and
ROA(_1) = @F D@+ B+ D pagy gy 95 (54)

(ﬁ + 1)11 (n - 1)'

These two formulas will be used in the next section.



Now we use (27), (26) and (28) to obtain for n =1,2,3, ...
n(n+a++1)P)(x) - (84 1)(z — 1)DPI (x)
= (n+a) [pP (@) + (8 + )PV (@)
= () [pPE (@) + (04 DA )]
= (n+a)(z+1)DPLLHD (),

Hence from (48) we obtain the following representations for Q%a’ﬁ ) (x) :

(c,8) — (B+2)na(a+B8+2)n (o, 3) (o,8+1)
Qi (a) o PP @ + G 0P @)] (69)
_ (ﬁ + 2)n (a + B+ 2)n71 (a—1,6+1)
= (o Doyl (x+1)DP; (z) (56)
forn=1,2,3,.... In a similar way from (49) or by using the symmetry relation (52) we find

(a

the following representations for R, #) () :

R () (o + 222 Jlr(f‘): 15 J 2n-1 nPED(@) — (a+ VP @] (57)
_ (et 2 (e +B+2)p1, (a+1,6-1)
_ R (z — 1)D P+ (4) (58)
forn=1,2,3,....

And if we use (31) we easily find from (50) that

1
(a+1)(B+1)
(a+B+2)p(a++2)p1
X
n!(n—1)!

S0 @) =

(22 = 1)D*PP) (), n=1,2,3,.... (59)

Note that the representations (55) and (57) imply that for n = 1,2,3,... we have

" 2)n_ 2)p_
QU () = 30 5P (@) with o) = L Dntl0 I Doy

60
b (a+1)p—1(n—1)! (60)
" (@ +2)n1( )
- a a . +2)pn-1(a+B8+2)p1
R(a’ﬁ) T) = ( aﬁ)P( ’ﬁ) T Wlth T(aﬁ@) _ o . 61
BT e ) itk (B Do (0 1)1 oy
By using (27) and (28) we also find from (50) that for n = 1,2,3,... we have
Z S(Q’ﬁ P(a75 )
with . ) )
sop) _nn—1) (at+B+2nlatf+2na (62)
’ (a+1)(B+1) n!'(n—1)!

10



6 The existence and uniqueness of the differential equation
and the ’eigenvalue’ coefficients

First of all we set
A=nn+a+p+1),n=0,1,2,...,

which implies that A\g = 0 and
A—Ap1=2n+a+3, n=1,23,.... (63)

In [4] H. Bavinck proved a theorem concerning differential or difference equations satisfied

by certain orthogonal polynomials. This result can be applied to the generalized Jacobi
o
polynomials {Pﬁ"@M’N(m)} . In that case for « > —1, 8 > —1, M > 0 and N > 0 his

n=0
result reads as follows :

Theorem (H. Bavinck). If
PP (1) £0 and PP (=1)#£0, n=0,1,2,... (64)
and
PR (1) + MQEA (1) #0 and PP (—1) + NROP(-1) #0, n=0,1,2,. (65)

then the generalized Jacobi polynomials given by (47) satisfy a unique differential equation of
the form (2), where

a0(07a76) - b()(0,0é,,B) - C()(0,0é,ﬁ) = 07
aO(”a a7ﬂ) = Z(AJ - Aj—l)q;aj 6)7 n= 172737 R
j=1

bo(n,a, B) =3 (N — NP, n=1,2,3,...
j=1

and
n

co(n, a, B) = Z s n=1,2,3,...,

where q]( ]’ﬁ), T‘j( ]’ﬁ) and s( ) e given by (60), (61) and (62).

Since a > —1, > —1, Po(a’ﬁ) (z) =1 and Q(()a’ﬁ) (x) = R(()a”g) (z) = 0 it easily follows from
(23) that condition (64) is satisfied. Since also M > 0 and N > 0 we conclude, by using (53)
and (54), that condition (65) is satisfied too.

By using (60), (61), (62) and (63) we find that

aO(”? «, ) - Zl (ﬁ —i(_a2:i_].l)5(il—zjﬁ_+12)3]_l (2] +a+ 6)7 n= 17 27 37 )
]:

bl ) = 3 o TBQE)E?‘L@ _i??j‘l (2j+a+8), n=1,23,. ..,
j:
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co(1,a, 3) = 0 and

_ (a+p+2)?
co(n,a,ﬁ)—m
$ (a+5+3)‘_1(a+6+3);2 . -
XJZ::Q (j—l)!] (j_z)!] (2j+a+p), n=234,....
Note that

(., ) =i e

(a+ 1)p k! (2k+a+B+2) = F,_1(8+2,a+8+2), n=1,2,3,...,
k

(a+2)k(a+ B+ 2)
E% (B+ 1) &!

and since (k+1)! = (2), £ =0,1,2,...

(n,a, ) = (2k+a+p0+2)=F,1(a+2,a+6+2), n=1,2,3,...

(a+B8+2%(a+F+3) = (a+ B+ 3)(a+ 8+ 4)
co(n, a, 3) RSV Z @),k (2k+a+ 5+ 4)
(a+B+2)%(a+3+3)

GrpD retfrdatfid), n=234

where F),(a,b) is given by (42). Now we use the summation formula (43) to obtain (4), (5)
and (6).
7 The computation of the other coefficients
First of all we remark that the symmetry relation (51) implies that
ap(n, o, B) = bo(n, B,a) and co(n, o, B) = co(n, B,a), n=0,1,2,... (66)
and
ai(a, B,2) = (=1)'b;(B, o, —z) and ¢;(a, B, 2) = (=1)'c; (B, a, =), i = 1,2,3,....

Hence we have (12). Note that in the preceding section we have already determined the
‘eigenvalue’ coefficients ag(n, «, 3), bo(n, ar, 3) and co(n, o, 3). From (4), (5) and (6) it is clear
that (66) is satisfied.

In order to compute the other coefficients {a;(z)};2,, {bi(z)};2, and {c;i(x)};2, we set
y(x) = P&SMN (1) in the differential equation (2) and use (47) and the fact that the classical
Jacobi polynomials satisfy the differential equation (25) to obtain for n =0,1,2,...

‘ME:% D' [P (@) + MQ () + NR{) (2) + MN S (z)]

+NZ} )D' [P () + MQ{™ (2) + NR (z) + MN S (2)]

12



n

+ MN Y ci(@)D* [P (@) + MQED () + NR) (z) + MN S (z)]
=0

+ M (1= 2)D*Q (2) + 8 — o — (a+ B+ 2)a] DQI™ ()
+n(n+a+ 8+ 1)Q) ()]
+ N [(1=22)D*RED (@) + [8 - a — (a+ B+ 2)z] DR (x)
+nn+a+ 0+ 1)R$f“”g) (x)]
+ MN [(1-2?) DS (2) + [ — a = (o + B+ 2)a] DS (x)
+n(n+a+B+1)S(z)] =0. (67)
Since P\ (z) = 1, Q1 (z) = RV (z) = 57 (z) = 0 and ao(0,, 8) = bo(0, ax, B) =

¢o(0, v, B) = 0 this is trivially true for n = 0.
Now we use (55), (57) and (26) to find for n =1,2,3,...

(ﬁ + 2)1171(05 + 6+ 2)1171

QM) = =y [+ B+ DR @) — (54 DT @)
and
Rgla,ﬁ) (:L‘) _ (Oé + 22;41_(%4‘ 167;1'- 2)n71 [(TL +a+ 1)P7(la,6) (1:) . (a + 1)P7(la+1’ﬂ_1)($)} )

By using these representations, (32) and (24) we find that

(1 —2H)D2Q(x) + [B — a — (a + B+ 2)z] DQ™P () + n(n+ a + B + 1)Q'*P) (x)
_ (ﬁ + 1)n(Oé + ﬁ + 2)n71 2 2 (04—173 1)
= T ar Dol QD RET@)

+[8—a—(a+ B+ 2)x] DP1H) ()
(ot f+ DR @)

_ (ﬁ + 1)n(Oé + ﬁ + 2)”*1 2DPT(L04—1,,3+1) (l‘)
(Oé + 1)n71 n!
B+ Dnla+ B+ 2)n

(Oé + 1)71,1 n!

P D) n=1,23,...

and

(1 —2*)D*RP) () + [6 — a — (a + B+ 2)x] DR (x) + n(n + a + B+ 1) R (z)
_ (a+Dal@+B+2)n-1 [ 212 platl,f—1)
- S [(1 2?) D2 PLethA=1) (g)

+[8—a— (a+ B+ 2)z] DRI (z)
+nn+a+pB+ l)P,gaH’ﬁ_l)(x)}

- (a + 1)n(a + /6 + 2)n—1 2DP7$Q+17g_1)($)

(B+1)p_1n!
a+1)p(a+8+2)n (at2,
N _( (ﬁ)+(1) —1n! )Pé——il_Qﬂ)(x)vn:L%ga““

13



Finally we have
D [(a* - 1)D*P{* ) (z)] = (2 — 1)D*P{*)(2) + 20 D*P ) (x), n =0,1,2,...
and
D? (2% = 1)D*P) (x)]
= (22 = 1)D*P*P)(2) + 42D PP () + 2D?* PP (z), n =0,1,2,...,
which implies by using (32) that
(1-2%)D? [(@* = YD*PPD(@)| + [8— a = (a+ B+ 2)a] D [(2? — 1)D* P ()]
+n(n+a+B+1)(@* - )D*P)(x)
= (22-1) [(1 —2?)DAPO) (2) + [B — a — (o + B+ 6)z] D3 PP (z)
+(n = 2)(n+a+ B+ 3)D*P)(z)]

2[(B+1)(z — 1) = (a + 1)(z + 1)] D*P*P) ()
= 2[(B+1)(x—1)—(a+1)(z+ 1) D*P(z), n=0,1,2,....

Hence by using (59) we find that

(1 —22)D?5@) (1) + [ — a — (a+ B+ 2)2] DS (2) + n(n + o+ B+ 1)) (1)
2 (a+84+2) (a+4+2)p-1

(a+1)(B+1) n! (n—1)!
x[(B+1)(z—1)— (a+1)(z+ D] D*P>D(z), n=1,2,3,....

Since we demand that the differential equation (2) must hold for all M > 0 and N > 0 we
view the left-hand side of (67) as a polynomial in M and N and conclude that all coefficients
of this polynomial must be equal to zero, hence we derive the following eight systems of
equations :

M : S=0 MN S5 =0

M? : S,=0 M2N : Sg=0

N : S3=0 MN? . S;=0

N2 . S;=0 M?N? . Sg=0,
where n =1,2,3,... and

_ - i p(a, (ﬁ+1)n(a+ﬁ+2)n (a,0+2)
S1= 3 a@)D P ) + = = R @),

= > al@)D'Q ) (@)

R ip(a) .y (@t Dnla+B+2)n (at2,8)
53 - Zbl(z)D Pn (LE) (ﬁ+1)n71n‘ Pn 1 (

Si =" bi(z)D'R™)(2),
=0

l‘)?
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- i ai( )+ Z bi(2) D' Q' () + i ci(x ()
; 2 (04 B 42 (@t B4 2
(a+1)(B+1) n! (n—1)!
x [(B+ 1)@ —1) = (a+ 1)(x+1)] D*PL (),
Za )D'S{P) () + icz'(w)DiQﬁ?’ﬁ)(x),
=0
Sy = Z bi(z)D'S P () + i ¢i(z) D' R{P) (1)
=0 =0

and -
Ss = ci(z)D'S\) ().
i=0
By using (55) it follows from S; = 0 and S = 0 that

= i (o 2)n—1(a + B + 2)77, (a,3+2
(@)D PS5y = B pLpt2) —1,2
Zal(x) n—1 (l’) (a 4 1)n—1 (77, _ 1)| n—1 (33), n ’ ,3

In view of (4) this is trivial for n = 1. Hence, by shifting n and using (4) and (30) we obtain

> () DA ()

=1
o QEM +>ﬁ 2t pes+) (4 — ag(n + 1,0, B)PA ()
o+
(B+2)n(a+p + 2)nt1 PLeB+2) () _ (B+3)n(a+ B+ 2)nm1 Pplasd+)
(a+1)pn (a+1)pn!
)'ﬂ (Oé + ﬁ + 2)” a a,
D (BRI @) — (04 4 2P )|
(Bt 3aci(a+ B+ Dnn TN L(a843)
T (n+a) (50 ) PV )

T+ 1> (B+3)n-1(a+ B+ 3)n
2 (a + l)n—l n!

~.

(z)
(B+3

= —(a+ﬂ+2)< PP ) n=1,2,3,....

Note that this system of equations has the form (33). Hence by using (34) we conclude that

ai(a, f,z) = —(a+ f+2) (x;1> 9

Xi atB+2+2 (B+3)1(atB+3)
(a+B+7+2)in (a+1),-9 5!

XP( a—i—1,—fB—i— 2)(:6)]3;2’1ﬁ+3)(x)’ ’[/:1,2,3,

In the same way we obtain from S3 = 0 and S4 = 0 by using (57), (5), (29), (33) and (34)

bia, B,7) = —(a+ B +2) (“";1) o
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i

s atpB+2i+2 (a+3)j1(a+B+3);

j=1 (a+5+j+2)i+1 (ﬂ'i‘l)]_l]'

—a—i=2,~f—i-1 +3, ,
x PP @) P @), i = 1,2,3,.

but this is not really necessary in view of (12).

In order to prove (8) we apply the definition (21) to ﬂ(:;:i_z_ﬁ_i_l)

(20) to P}Oﬁg’ﬁ ) (x) to find by changing the order of summations and by using the summation
formula (44)

() and the definition

: a+B+25+2 (a + 3)]‘_1(04 + 6+ 3)]‘ (—a—i—2,—B—i—1) (a+3,8)
> P () P; (2)

T+ B+7+2)in (B+1)-14! i i1
_ i—1 o+ ﬂ + 2] + 4 (Oé + S)J(Q =+ ﬁ —+ 3)j+1 P.(_q_i_z_ﬁ_i_l) (:L.)P‘(O"i'?’:ﬁ) (x)

SlatB+i+dm  B+1);@G+DE T J

i—1

at+B+2i+4 (a+3)(a+B+3)m
—(a+B+j+3)itn  (B+1);(G+1)!

i—j—1 . . . k
X (—1)i-i-1 ZJ: (a8 +itj—k+4)(ati+3)iji (m—l)

= k! (i—j—k—1) 2

" zj: (a+B+j+4)m(a+m+4)_p (m;1>m

= m! (j —m)!

T — 1>k+m

> (a+ B+25+4) (1)1 < 5

(a+3)ik—1(a+ B+ 3)jpmpr(a+m+4)_m

B+ kn (B 1); G+ DIRLG = — k= Dlml (G — m)!
i—1i—k—1i—k—m—1 o r—1 k+m
= > (a+ﬂ+2j+2m+4)(—1)”m1< >
k=0 m=0  j=0 2

" (a+3)i—p—1(+ B+ 3)j42mt1(a + m +4);
(a+B+7i+m+3)ickt1(B+1)jgm G+m+1INEN (i —j—k—m—1)Im!j!

(@ +3)i—g—1(a + B+ 3)am+1
(a+B8+m+3)ik1(B+Dm(m+1)E(G—k—m—1)m!

ot ()

i_l (—i+k+m+1)(a+B+2m+4)(a+m+4)(a+B+m+3);
(a+B+i—k+m+4);(6+m+1);(m+2);j!
X (a+ B+ 25 +2m +4)
(a@+3)ik—1(a+ B+ 3)am+1
(a+B8+m+3)ik1(B+Dm(m+1)E(GE—k—m—1)m!
(a+ﬂ+2m+4)i,k,m(—a - 2)i7k7m71 _1)i—m—1 (x — 1>k+m
B+m~+1)igma1(m+2)ikm1 2

i—k—1
= 2 2

k=0 m=0

~
[y
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_ -« i_k_l(_l)ifmfl (a+3)i gk 1(a+B8+3)m(—a—2)i g_m-1 (x — 1)k+m
e (B+1)ik1 (i — k) E (i —k—m—1)'m! D)
LSSyt (@i m(@ A (a0 =2 <$_1y
m=0 l=m B4+ Dsttam G—C+mN (L —m) (i —0—1DIm! \ 2

i—1 Y
o qyiel (a@+3)i—g—1(—a—2)j—r z—1
= = E:u%+n (—eﬂa@—z—1ﬂ( 2 )

& mlati—C42m@+B+3)m
sz;o 5+2— Dol = {1 D] ,i=1,2,3,....
Hence

i1
, (@+3)ie1(—a—2); ¢ 1
bi(o, B,2) = (o + S+ 2)(=2)" - ~
(o, B,2) = ( B ) )ZE)(/34_1)17[71(1—6)!(1—5—1)!6!
—€,a+i—€—|—2,a+ﬂ+3‘1) (x—l)”l i—19.3
Bi—ti—l+1 2 T

><3F2(

which proves (8). The proof of (7) is similar, but it is easier to use (12) since then (7) follows
easily from (8).

The computation of the coefficients {c;(x)}52; is more difficult. First we set n = 1 into
Se =0 or S7 = 0. Since we have S£a’5) (x) =0 from (59) and co(1, o, ) = 0 we conclude that

ci1(x)D Q(aﬁ (x) =0 and cl(m)DRga’ﬁ)(x) =0.

By using (56), (58) and (24) we find that

QP (1) = (a+5+2) <:c+ 1) and R\ (z2) = (a+8+2) (w ; 1) .
Hence 2
Danﬂ) () = DR(la,,@) () = % £0,

which implies that ¢;(x) = ¢1(a, 8,2) =0
Now we consider the system of equations Sg = 0. Since S%a’ﬁ) () = 0 the case n = 1 is
trivial. Now we use (59) and (24) to find that

1 (a+ﬂ+2)n(a+ﬂ+2)n+l

2_1 P(OH-QB-I—Z) —9 4
(a+ D@ +1) Inl (n— 1)1 (2" = DB (@), n=2,3,4,

500 =

By using the fact that

1 (a+B+2)n(a+B+2)nm
0,n=2,3,4,...
@+ 1)(B+1) Anl(n—1)! 70, n=234
we conclude that
ch { x* — 1)P7(13J52’6+2) (x)} =0,n=23,4,....
1=0
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Now we use the fact that ¢1(z) = 0 to obtain by shifting n

> ci(z)D’ [(w2 — 1) pletf+2) (rc)} =co(n+2,0,8)(1 —2?) P> (2), n=0,1,2,....
=2
Note that for n =0,1,2,... we have
D' [(2? = 1)PP(@)| = (2% = 1) D' P () + 262D PP (2)
+i(i —1)D2PB) (2), i =2,3,4,. ...

Hence we have

3" Ci(@) D'PLTED (1) = co(n + 2,0, B) (1 — 2?) P2 (2), n=0,1,2,...,  (68)
=0
where
2¢2(z), i=0
Ci(x) = ¢ 4dxca(z) + 6¢3(x), i=1

(22 — V)ei(x) +2(i + Dwcipr () + (G + 1) (i + 2)cipa(x), i=2,3,4,....

Note that the system of equations (68) has the form (35). So we may apply (36) and use (6)
to conclude that for ¢ = 0,1,2,... we have

. _ _Qii atf+2j+5

Cile) = =202 T v o
B m+ﬁ+%%a+ﬁ+$u_x%y
- (oz+.1)(ﬁ‘|‘1)

)

XZ a+B+2j+5 (a+pB+4)1(a+34+4);
(a+B+j+5)im (j+1)! !

« Pi(:jafif?),fﬂfifis) (x)Pj(a+2,ﬂ+2) (). (69)

colji+ 2.0, 8P @) PRI (g

J=0

As before we apply the definition (21) to P-(:ja*ifg’*ﬁ*i*g) (z) and the definition (20)

i
to P](a+2,ﬂ+2) (iU)

formula (44)

to find by changing the order of summations and by using the summation

i a+08+2j+5 (a+F+4)41 'oz +B+4); plami=3=p=i=3) ) plat2,0+2) )

(
i (a+B+j+5)in (j+ 15! i J
(

zi: a+B+2j+5 (a+B+4)j41(a+B+4);

et B+5+5)in (7 + 1)ty

y (_1)¢_j§ (@+B8+i+7—k+6),(a+j+3)i (:U—l)k
P k! (i—j— k) 2
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y Xj: (4 B+7+5)m (a+m+3)j_m <x—1>m

m=0 m! (J_m>' 2
i i=j e 1\ km
S % Y (at 842451 (T57)
Jj=0k=0m=0

(a + 06+ 4)j+m+1(a + B+ 4)]'(04 +m + 3)i—k—
(a+B+7+5)ickr1 (G+DIEN (i —j—E)!ml(j —m)!
i —k i—k—m

_ k+m
> 5 Y v (1
k= 7=0

0m=

" (a+B+4)j2mi1(a+ B +4)jim(a+m+3)i_p
(a+B+i+m+5)igr1(G+m+1)G+m)E (i —j—k—m)m!j!

> S:k (@+B+4oamt1(a+B+Dmla+m+3)ik—m
(a+B8+m+5)i—pr1 (m+1D)Imlkl (i —k —m)!m!

k=0 m=0

x (=1)=m (a: ; 1)’”’”

xiifm(—z’+k+m) (a+B+2m+5)j(at+B+m+4)(a+f+m+5)

(a+pB+i—k+m+6);(m+2);(m+1);j!
X (a+B+2j+2m+5)

Zii“ (4 B+ Damyr(a+ B+ Do+ m+3)ip
==y (et B+m+5)ipy1 (m+ DImlEl (i — k —m)!m!
(a+B+2m+5)ipmit(— = B—=3)ikem, i (= 1\
X M+ 2 rm(m + D (=1) ( 2 )
)

= (@t B+ Dmpi(a+ B+ Dmla+m+3)ip_m(—a—B—3)_j
22 H(z’—k—kl)!(i—k)!k:!(i—k:—m)!m!

=0

x (=1)=m (x ; 1>k+m

& (@t Bt Dmri(at+ B+ Dmla+m+3)i(—a—B-3)ig
22 (t—L+m+1)GE—L+m) (L —m)(i—20)!m!

X (—1yim <x ; 1>€

i~ (43)if(—a—B—3), 4 [x—1\
(et A+ =12, (z—£+1)!(i—€)!€!(z’—€)!< 2 )

y i —O(a+ B+ 5)mla+ B+ Dm(a+i—L+3),
— (a4 3)m(t =€+ 2)p(i — €+ 1), m!

,1=0,1,2,....

m=0

Hence for i = 0,1,2,... we have

(a+B+2)2(a+B+3)(a+B+4)
(a+1)(B+1)

Ci(z) = (1—2%)(-2)’
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" (a+3)—(—a— B —3);
X§:u—e+1f( yﬂ@—§

<—€,a+5+5,a+ﬁ+4,a+i—e+3’ )(x—l ¢
X 4F3 . . 1
a+3,i—0+2i—0+1

=0

Now we have by using (39) and (40)

i—2
ale) = % ()3t @+ ) = (@ = 1) Oy(a)
b=
1—2
= % (=1 —j—2)! [(m + 1)J'+1 (z — 1)]+ } Cija(z)
b=

where
8 RSN »
(@) = e ﬁ,)‘5],0“4V@—j—@wx+U”V%+4@%i=23Aw~
=
and
i—2
61(2)(@ = 02(2)(04,@35) = % (-1 G —j—2) (z — O ja(x), i =2,3,4,....
s

Now we will prove (10) and (11). To do this we will first prove (13), which is an easy
consequence of the symmetry formula (22). If we write C;(z) = C;(«, 3, z) this symmetry
formula gives us

Ci(aaﬂa .’E) = (71)i0i(ﬁ’aa *IL'), 1=0,1,2,...

in view of (69). Hence

i—2
D@ Bia) = S SV - e+ DOy afaB,2)
=0
i
R T A S W

7=0
= (=P (B,a,—3), i=2,3.4,...,

which proves (13). In order to prove (11) we use (70) and change the order of summations to
find for i = 2,3,4,...

() = zuz D7 = 5 = 2)l (@ = 1) Cija()
_ m+ﬁ+m%a+ﬂ+@w+ﬁ+®@;_U@mF2
N (a +1)(ﬂ+1) il
Xzz (a@+3)i—jop—2(—a—B—3)i—j_r—2(i—j—2)!
L2 i k- DI(i—j k- 2k (i—j k- 2)
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(—k,a+ﬂ+5,a+ﬁ+4,a+i—j—k+1‘ ><x—1>j+k+1
X 4F3 D o 1
a+3,i—j—ki—j—k—-1 2

_ @B+ et ft3)atftd) 2 (27

(a+1)(B+1) il

G2 (0 +3)ipa(-a—F-3)iys(i—j—2)
X;); (i — —1 W0 —€— 20— j)(i—f—2)

€+j,a+ﬁ+5,a+ﬁ+4,a+z—€+1‘ )(x—1>f+1
x 4F3 . . 1
a+3,i—¥0i—{¢—1 2
 (a+pB+2)? (a+6+3)(a+6+4)( _1)(—2)1'—2

(a+1)(B+1) i
22 (a4 3)ipa(—a— B—3)pa(i—j —2)!
XZZOE% z—€—1 Wi —0—2)1 (6 — ) (i —€—2)

{— . .
(—+ Dmla+ B+5)m(a+ B+ m(a+i—L+1), (z—1)
XZO (@4 3)m(i— Oonli — € — D)l ( 5 >
2(a+pf+3)(a+B8+4)

_ (@t8+2)
(a+ D+ 1)
2

(a® = 1)~

i—2 £ (4 3)i—p—o(—ar — B — 3)i_s_
Xéz—;)zo i—l—1)! (2*5*2)!(i—€—;)!
(@t B+5)m (a+6+4)m(a+i—€+1)m(x_l)eﬂ
(@ +3)m(i = O)m(i — 1) 5
(i = j =2 =L+ ))m
XZ o

Now we use the Vandermonde summation formula (41) to obtain

& (i—j =2 (= €+j)m_(z—2 o (—C+m);
322%) (£ =) a jz:(:] —i+2);
(i —2)! —L+m,1 (1 —2)! (=4 1)o—m
= (O 2F1< —i42 1>_ IR e v
G LN G VL G A ) S el V| Gl A 1 Gld P Gl B V1
] ( )m(i—Z)!(i—€+m—1)!_ @G —£—1) (i —O)m
Hence

o 2 a a .
@) - (+5+ig;$éi?f+ﬂ+®u@_w@ml2

¢ (a+3)i—p—o(—a—F—3)i—v—2
X
KZOmZ:O i—0—1)! (Z—E—Q)'f'(z—f—l)!
o EOmla+ B+ 5)mla+ B+ mlati—Ll+ <x—1>f+1
(@ + 3)m(i — O)m(i — O] 2
(a+B8+2)7*(a+3+3)(a++4)

_ 22— 1)(—2)i—2
- (a+1)(B+1)i ( D(=2)
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i—2

(a+3)i—r—2(—a— B —3)i—r—2
XZ G- 1) —L—2)0(—C—1)

<—€,a+ﬂ+5,a+5+4,a+i—£+1‘ )(x—1)’f+1
X 4F3 . . 1
a+3,i—40,i—4 2

=0

for i = 2,3,4,..., which proves (11).
Hence we have proved (9), (10) and (11).

8 The order of the differential equation

Fora > —1,8> —1, M > 0and N > 0 the generalized Jacobi polynomials {Po‘ﬂ MN (g )} .
n—=

satisfy a unique differential equation of the form (2), where the coefficients are given by (4),

(5), (6), (7), (8), (9), (10) and (11).

First of all we remark that
ZW’ B)(x+1),i=123,..

where
(B+3)i—1(=8 —2)i—1
(@t )il (i—1)

(. 8) = —(a+ B +2)2"! i=1,2,3,....

Since a > —1 and 8 > —1 we conclude that kgi)(a,ﬂ) only vanishes if 4 € {0,1,2,...} and
1 > [+ 4. In the same way we have

bi(a, B, x) ka Bz —1),i=1,2,3,...,

where
i1 (@ +3)i1(—a—2);

B+ 1)1il(i— Dl
Hence, k: (a () only vanishes if o € {0,1,2,. } and i > o + 4.

Now we will prove (15). So let a € {0,1,2,...} and consider b;(c, 3, x) given by (8).
Suppose that ¢ > 2a + 4. Then we have

(0, 8) = —(a + B+ 2)(~2) i=1.2.3.....

(—a—2);¢p-1=0 for i —0>a+4.

Suppose that i — ¢ < a + 3, then we have £ > i —a — 3 > a+ 1. Hence by using (46) and the
Vandermonde summation formula (41) we find that

_€7a+ﬁ+3,a+l—€+2
3F2< Bti—ti—l+1 ’1)
J4
_ n(=On(a+B+3)n(—a—1), n—fn+a+8+3
- Z( D (B+i—"L)n(i =L+ 1),n! F( n+B+i—4 ‘1)

B 1 W (Onla+B+3)n(—a— 1) (i =l —a—3)y
- G G Em -

n=0
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Since i—¢ < a+3 we have i—¢—a—3 < 0. Hence (i—¢{—a—3)y_, =0 for {—n > —i+l+a+4
or i > n+a+4. This implies that b;(c, 8,2) = 0ifi > n+a+3foralln € {0,1,2,..., a+1},
hence for i > a+ 1+ a+3 =2a+4.

In the same way we obtain (14).

Now we will prove (17) and (18). Suppose that o € {0,1,2,...} and ¢ = 2+ 4. Then we
have

(t—l—a—=3)ypn=(ae+1—=0)p_, =0 for n<a.

Hence

b2a+4(047 ﬁa {E)
2a+3

_ _9)2a+4 (o + 3)2a43-e(—a — 2)2a43-¢ z -1\
= I Y G s a2 140120 501D (%)
% (=p*t (=Oat1(a+ B+ 3)ayi(—a — Dagr(a+1—L)p—a
Qa+p5+4—-1) (20 +5—=0)gy1(a+ 1)
(@+B+3)ar1 X

o(—a—2)sq 13 [z — 1\
(5+1)2a+3(a+2)!zgl(_1) 201310 ( > )

22a+4 a+2 2)£ r—1 2a+4—¢
S Es e M (%)

920-+4 z— 1\ [z 4+ 1)\*2 (22 — 1)°+2
N _(ﬂ+1)a+1(a+2)!( 2 ) ( 2 ) T B+ Dani(@t2)0

= (a+p+2)(-2)*"

which proves (18). The proof of (17) is similar.

In order to prove (16) we first consider 022)(04,5,1') given by (11). Let o, 8 € {0,1,2,...}
and suppose that i > 2a+ 23 4+ 7. Then we have

(—a—f—=3)i—2=0 for i —(>a+[+6.

Suppose that i — ¢ < o+ 8+ 5, then we have £ > i —a — 3 —5 > a+ [+ 2. Hence by using
(45), (46) and the Vandermonde summation formula (41) we find that

A, a+B+5a+B+4,a+i—0+1
4F3( a+3i—0i—10 ‘1>
‘
_ . n(ig)n(a+ﬂ+5)n(a+ﬂ+4)n(70‘*1)n
nzz:()( 2 (a+3)n(i — O)n(i — £)pn!
n—Uln+a+B+5n+ta+pB+4
X3F2( n+i—4n+a+3 ‘1)
a+1
_ n(=On(a+B+5)n(a+ B+ 4)n(—a—1),
= 2 (D) (a+3) (z'—z) (=Dl
—Ok(n+a+B+5)(=8— 1L
XZ (n+i—0)kn+a+3);k!
X2F1<n+k—€,n+k+a+ﬁ+5‘l>

n=0

n+k+i—/4
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L (0alat BBt B+ Au(—a — 1)y
= 20 (a+3)n(i = nli — )nnl

n=0

B+1
—Or(n+a+B+5)(—=8—1)
XZ (n+z—£) (n+ o+ 3) k!
~ (Z.—E—Oé—ﬁ—5)g,n,k
n+k+i—0)p_n_k

a+1p+1

_ nk —Onyk(a+ B+ 5)nir(a+ B +4)n
B Z > (-1 (o + 3)py (i — O)p ! k!

X (_a - 1)n(_5 - 1)k(Z —l—a—-pF- 5)€—n—k-

Sincei —¢ < a+p+5wehavei—¢—a—F—-5<0. Hence (i — ¢ —a— [ — 5)an—0f01‘
{—n—k>—i4+l+a+pF+60ori>n+k+a+F3+6. Thlsunphesthatc ( ,B,2) =0
ifi>n+k+a+p+5forallne{0,1,2,...,a+1} and k € {0,1,2,...,3+ 1}, hence for
z’>a+1+ﬂ+1+a+ﬁ+5—2a+2ﬁ+7

Inthesamewayweﬁndthatc (a B,x) =0 fori>2a+25+7.

Suppose that o, f € {0,1,2,...} and i = 2a + 23 + 7. Then we have

£ n=0 k=0

(i—l—a—0—=5)pnir=(@@+B+2—0)p_pt=0 for n+k<a+pF+1

Hence

(2)
62a+2ﬂ+7(a7 B, x)
 (a+B+22(a+B+3)(a+B+4), 5 1)(—9)20+26+5
(a+1)(B+1)(2a+26+7) (2" =1)(=2)
2a-+2645

o Z (a4 3)2a+28+5—(—0 — B — 3)2a+28+5-¢ <93 1>£+1
2a 120460l (2a+t2515—01(2a+20+6— 0\ 2

l=o+F+2
(=12 (—O)atpr2(a+ B+5)arpre(a+ B+ 4)ar1
20+ 28470 (@ +3)asgr22a+28+7 — a1 (a+ DB+ 1)!
X (—a=1Day1(=8 — D@+ +2—L)—a—p-2
_ (@4 f4 D%t f43) @+ fHA) o ) ooaranes
(a+1)(B+1)(2a+26+7)
(a+B+5)arpr2(a+ B+ 4)atr
(a4 3)ayp+2(200+ 284 6)! (a + 2)!
2a+20+5

x> (—1)6(_0[ — B = 3)2a+2545-0 <a: - 1)“1

b (20 +28+5—0)! 2
a+B+2 920+26+5 )
T (e DB+DRa+28+7) (a+B+1) (a+ﬁ+3)!(x -1
y aﬂLZﬂJrfi (—a—fB—3) (x_ 1)2a+2ﬁ+6e
0 2
_ at+f+2 22a+25+5 (22— 1)

(a+1)(B+1)2a+28+7) (a+F+1) (a+8+3)!
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r—1 a+p+3 41 a+B+3
X( 2 ) ( 2 )

a+pB+2 (22 — 1)otPHd
20+ 1)(B+1D)(2a+28+7) (a+ B+ 1) (a+ 8+ 3)

Hence, because of the symmetry relation (13) we find that

1 2 2
Céo?+2,8+7(a>ﬁa T) = _Céa)-s—m-i-?(ﬁ?av —z) = _Cgo3+2,8+7(04757$>7

which implies that

(1
62a+2,3+7( 57 ) C2a)+2,6’+7( /87 ) + 0204)+2,8+7( 7ﬁ7 l‘) =0

Hence we have proved (16).
In order to prove (19) we first consider C;(a, 5, x) = C;(x) given by (70). We assume that
a,€{0,1,2,...} and i > 2a 4+ 23 + 6. Then we have as before

(—a—p—=3)j—¢=0 for i —L>a+[+4.

Suppose that i — ¢ < o+ 8+ 3, then we have £ > i —a — 3 —3 > a+ [+ 3. Hence by using
(45), (46) and the Vandermonde summation formula (41) we find that

(—E,a+ﬁ+5,a+ﬁ+4,a+i—€+3’ )
4 F3 , ‘ 1
C¥+37Z—£+172_£+2
= i(—l)"(_@”(o‘+ﬁ+5)n(a+ﬁ+4)n(—a—1)n
(@ +3)n(i— 4+ 1)p(i — £+ 2)pn!
(n—€7n+a+ﬁ+5,n+a+ﬂ+4‘ )
X k5 , 1
n+i—f+1n+a+3
= §(—1)”(_£)”(a+5+5)”(0‘+5+4)n(—04— Dy
(a+3)n(i — €+ 1) (i — £+ 2), !

n=0

l—n
p(n—=0Or(n+a+B+5)(=8—1)
2 (=1) (n+i—L0+1g(n+a+3)k!

><2F1<

L (On(a B B)n(at B+ A)u(—a— 1),
2 =+ Dl =+ 2

n+k—€,n+k+a+ﬁ+5‘1>
n+k+i—£0+1

n=0

Xﬁz“ —Op(n+a+B+5)%(—8— 1)k
n—i—z’—@—i—l)k(n—i—a—i—S)kk!
(i—l—a—F—4) np
(n+k+i*€+1)€—n—k

= Of /Bi_:l n+k )n—l—k(a + 0+ 5)n+k(a +68+ 4)"
f—i— 1),

(0 +3)pti(i — €+ 2),nl k!
X (—O[ - 1)n(_ﬁ - l)k(z —l—a-— ﬁ - 4)€fnfk~

£ n=0 k=0

25



Sincei — ¢ <a+pf+3wehavei —¢—a—F—-4<—-1. Hence (i —{ —a—0F—4)j_pn_ =0
forl—m—k>—-i+l+a+pF+50ri>n+k+a+[+5 This implies that C;j(z) =0
ifi>n+k+a+p+4forallne{0,1,2,...,a+1} and k € {0,1,2,...,3+ 1}, hence for
i>a+14+8+1+a+8+4=2a+28+6.

Suppose that «, 5 € {0,1,2,...} and i = 2ac+ 23 + 6. Then we have

(i—l—a—0—4)pir=(a+B+2—0p_pt=0 for n+k<a+F+1.

Hence

Coat28+6()
2)2 3 4
- za(iJlr)fﬁtr i;a e )(1 — 2%)(—2)2+2h+6
S (@ + 3)2a+28+6—¢(— — B —3)aat28+6-¢ (IL’ - 1>£
2at20+7 020 +20+6— 0! (2a+20+6_0l0\ 2

t=a+p3+3
(—1)>th+2 (—0Oatpr2(a+ B+5)atpra(a+ B+ 4)at1
2a+28+7—0)¢(a+3)arpra20+ 26 +8 = O)arr (a+ 1)1(G+1)!
% (~a = Dasa(—f — Dppa(a+ B+2 o g
(a+B+2)*a+B+3)(a++4)
(a+1)(B+1)
(+B+5)atpr2(a+ B +4)atr
(a4 3)ats+2(2a+ 28+ 6)! (o + 2)!
2a+23+6

_ye(ma=B—=3)st516-0 (2 —1 ¢
Xl:céjﬁm( ) (20 +28+6-0)! ( 2 >

20+28+6

(1 - wZ)(_2)204+26+6

. a+f+2 220 +26+6 (122
T arDB D@t B D)i(arpgr3 "
a+B+3 A _ 1\ 20+26+6—¢
((—a=B=3) [z -1
% K:ZO (=1) 7 ( 2 )

. a+f+2 220 +25+6 (12
T @rDB D@t B D) (arpray "

r— 1\ot8+3 z+1 a+5+3
X( 2 ) ( 2 >
a+f+2 (22 — 1)atp+d
(a+1)B+1D) (a+p+1) (a+p+3)

Now we use the fact that
Ci(z) = (22 — Dei(x) + 200 4+ Dzeipr () + (1 + 1) (i 4 2)cipa(x), i =2,3,4,. ..

to conclude that
Contasrs(r) = (2% = 1)eantapse(2),
which leads to (19).
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9 Some remarks

Let > —1 and § > —1.

The coefficients {a;(z)};2; and {b;(z)};2, can also be computed in the same way as we
computed the coefficients {¢;(z)};2,. Consider the system of equations Sy = 0. First we use
(24) to find from (58) that

(@ + Dn-s(a+ B+,

00 —
B = G oo

Now we use the fact that

(O[ + Q)N—l(a + 0+ 2)n

0,n=1,2,3,...
2(5"‘1)71—177/' 7é , 1 ) “y )y

to conclude that
ibi(x)Di (@ = 1)P (@) =0, n=1,2,3,....
=0
Hence, by shifting n we obtain
ibi(x)Di [(x — 1)Plet2h) (;c)} = —by(n+1,a,8)(z — 1)PL2(z), n=0,1,2,....
i=1

Note that for n =0,1,2,... we have
DiKt—DR?”ﬁN@}:(m—UDﬁ%M%m@ﬂ+UTARTHﬁH@,i:L2£V“.
Hence we obtain

> Bi(@) DI (@) = —bo(n+ 1L, B)(x — VP2 (@), n=0,1,2,..., (71
=0

where
bi(x), i=0
Bi(z) =
(x - 1)61(.%) + (Z + 1)bi+1($), 1=1,2,3,....

Note that the system of equations (71) has the form (35). So we may apply (36) and use (5)
to conclude that for ¢ = 0,1,2,... we have

e atB+2i+3
Bila) = ~(@-1)2 ]z:(:) (@+B+7+3)it1
= —(a+8+2)(z—-1)2

7

XZ a+06+25+3 (a+3)j(a+ﬁ—|—3)j
Sat+B+i+3)ia (B+1);7!

—a—i—3,—3—i—1 a+2,
x BT ST 0m () Pt ). (72)

bo(i + 1,0, B) PP (@) P )
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As before we can deduce that for ¢ =0,1,2,...

Bi(z) = —(a+B+2)(z—1)(-2)
(a4 3)ime(—a —2)iy
2 B+ Vis(i — 0101 (i — 0)]
~la+i—0+3,a+3+3 z—1\*
Bti—l+1i—0+1 ’1>( 2 )

=0

><3F2<

Now we use (37) and (38) with z = 2 — 1 to find that

|
—

i

bi(z) = (=) (z — 1)1 By(x)

| =

.
)

Il
- o

= (~1)(i—7— D) (x—1)Bi_j_1(x), i=1,2,3,...
7=0

S| =

which leads to (8) after changing the order of summations and using the Vandermonde sum-
mation formula (41) as before.

In a similar way the coefficients {a;(x)};2; can be computed from the system of equations
Sy = 0. In that case we would need (37) and (38) with z = = + 1, but it is easier to use the
symmetry relation (12) of course.

In [3] H. Bavinck found the following interesting formula involving Laguerre polynomials :

Z' .
SRLCET T (o)L (@) = (<2)* 01 jy2e 12 5+ 25, 0G5 €{0,1,2,. .,
k=j

which holds for all . In [5] he found an analogue of this formula involving Jacobi polynomials :

Zi: a+B8+2k+1

20 ,
py (a+B+j+k+1)i

[k(k +a+ 5+ D] PO (@) B ()

= (% — 1)%6; j42s, 0 > j + 25, 4,5,5 € {0,1,2,...},

which holds for —(a+ 5+ 2) ¢ {0,1,2,...}. The case « + 5+ 1 = 0 must be understood by
continuity. This formula can be applied to (69) and (72). Since we have

(@+3)j(a+B+3);  (F+1ar2(B+7+1)ate

(B+1);4! T (Bt Dagelat+2)! , €{0,1,2,...}
and
a+2
G+ Datr2(B+i+ Dotz = [[ UG +a+B+3)+kla+B+3-k)], a€{0,1,2,...}
k=1

this implies that for « € {0,1,2,...}

(I2 o 1)a+2

Bi(z) = —(a+ B +2)(x - 1)(ﬂ+ Data(a+2)!

(5,‘720[_1_4, ) > 20 + 4.
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Hence, for o € {0,1,2,...} we have
(.’L‘2 _ 1)a+2
(B+ Dasi(a+2)V

which leads to (18) eventually. In a similar way we find for o, 5 € {0,1,2,...}
(a+B+4)jpi(a+B+4);  (J+2)atp+3( + Datprs

Bi(z) =0, i>2a+4 and Bagia(z) = —(z—1)

(5 +1)! 4!  (a+B8+3) (a+B+3)
and
a+/+3
(G +2a+p+30 + Dasprs = [ G +a+8+5)+k(a+B8+5—k),
k=1

which implies that in view of (69) we have

(x) = (a+B+2)*(a+p3+3) (2% — 1)t0+4 .
Cz(x) - (Oé+1)(/8+1) (a‘i‘ﬂ—i-?))!(a+5+3)!6i,2a+2ﬁ+6, i > 20+ 28 + 6.

Hence, for o, 3 € {0,1,2,...} we have

Cile) =0, i>2a+20+6 and Chatasro(®) =~ NGB Ty G ¥ A+ Di(a+ F 13!

as before.
If we set M = 0 into (2) we get the differential equation

NS b)) + (1 - ) (@)
=0

+[B—a—(a+p+2)x]y(x) +nn+a+ 8+ 1)y(z) =0, (73)
satisfied by the polynomials {Pﬁ‘ﬁ’o’N (a;)}oo_o. From the limit relation (1) it follows that

. (—Q)i i po,3,0,N ( 293) i ra,N .
lim ~—~ (D*P&" 1—— ) =D'LY"(z), n=0,1,2,...,i=0,1,2,...,

where L2V (z) denotes the generalized Laguerre polynomial considered in [9]. Note that from
(5) we easily find that

. bo(n,a,B) <n+a+1
hm —_— =
f—o0 J6] n—1

Now we use the Vandermonde summation formula (41) to find from (8)

), n=0,1,2,....

N

[311—{20 (_2)1 bi(a, 3,1 = 2x/3)

i—1 .

(Oé + 3)1',[,1(—01 — 2)1',[,1 ( —la+i—L+ 2’ ) 041

ZE) Gi—0li—t—1n 2 i— 041 (=2)
_ g (@+3)i—e-1(—a—=2)ip1(—a—1) ()t

2 NGi—i—0a

1< o a+1\ [fa+2 .
_ 1 _1Z+J+1( >( ) gl =123,
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Hence, if we set y(x) = P2%%N (z) into the differential equation (73), change x by 1 — 2z/8,

divide by @ and take the limit 8 — oo we obtain the differential equation for the polynomials
o0

{L%N (m)} which was found in [9)].

In [10] and [14] we found all differential equations of the form (3) satisfied by the poly-
o0

nomials {Pﬁ’o"M M (ZL‘)} . where o > —1 and M > 0. We emphasize that these differential
e

equations are not of the form (2). The differential equation (2) leads to another one after

setting 8 = a and N = M.

. . : . ALON™
In [14] we also found differential equations for the polynomials P , Where

n=0

a > —1and N > 0. It can be shown that these do coincide with (2) after setting M = 0 and
0= :l:%. For a € {0,1,2,...} and N > 0 these differential equations have finite order 2« + 4.
Finally we can correct a table conjectured in [8] listing the cases for which the polynomials

{Pﬁ’ﬁ’M’N (3:)}00 o satisfy a finite order differential equation of the form (2) with minimal
e

order :

’ M, N ‘ a, B ‘ order
M=0, N=0 a>—1, 6> -1 2
N=Mz>0 g=ac{0,1,2,...} 2c0 + 4

M=0,N>0|aec{0,1,2,...}, 3>—-1| 2a+4
M>0, N=0|a>-1, €{0,1,2,...} 260 +4
M>0, N>0 a,fe€{0,1,2,...} 200+ 23+ 6
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